Preparation and in-vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymer

Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
International Journal of Nanomedicine (Impact Factor: 4.38). 02/2012; 7:511-26. DOI: 10.2147/IJN.S24326
Source: PubMed

ABSTRACT Superparamagnetic iron oxide nanoparticles are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging, and therapeutic applications. In our study, superparamagnetic iron oxide nanoparticles and the anticancer drug, doxorubicin hydrochloride, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. The magnetic properties conferred by superparamagnetic iron oxide nanoparticles could help to maintain the nanoparticles in the joint with an external magnet.
A series of PLGA:PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide with different molecular weights of polyethylene glycol (PEG(2000), PEG(3000), and PEG(4000)) as an initiator. The bulk properties of these copolymers were characterized using (1)H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In addition, the resulting particles were characterized by x-ray powder diffraction, scanning electron microscopy, and vibrating sample magnetometry.
The doxorubicin encapsulation amount was reduced for PLGA:PEG(2000) and PLGA:PEG(3000) triblock copolymers, but increased to a great extent for PLGA:PEG(4000) triblock copolymer. This is due to the increased water uptake capacity of the blended triblock copolymer, which encapsulated more doxorubicin molecules into a swollen copolymer matrix. The drug encapsulation efficiency achieved for Fe(3)O(4) magnetic nanoparticles modified with PLGA:PEG(2000), PLGA:PEG(3000), and PLGA:PEG(4000) copolymers was 69.5%, 73%, and 78%, respectively, and the release kinetics were controlled. The in vitro cytotoxicity test showed that the Fe(3)O(4)-PLGA:PEG(4000) magnetic nanoparticles had no cytotoxicity and were biocompatible.
There is potential for use of these nanoparticles for biomedical application. Future work includes in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of lung cancer.

Download full-text


Available from: Amin Barkhordari, Mar 21, 2014
1 Follower
40 Reads
  • Source
    • "QDs may be advantageous because administration of a QDs formulation is non-invasive and eliminates the need for a biopsy. QDs toxicity, however, remains a major concern for clinical applications [43] [44] [45] [46] [47] [48] [49]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This review describes the state of art in nanoparticle and nanodevice applications for medical diagnosis and disease treatment. Nanodevices, such as cantilevers, have been integrated into high-sensitivity disease marker diagnostic detectors and devices, are stable over long periods of time, and display reliable performance properties. Nanotechnology strategies have been applied to therapeutic purposes as well. For example, nanoparticle-based delivery systems have been developed to protect drugs from degradation, thereby reducing the required dose and dose frequency, improving patient comfort and convenience during treatment, and reducing treatment expenses. The main objectives for integrating nanotechnologies into diagnostic and therapeutic applications in the context of intestinal diseases are reviewed.
    Digestive and Liver Disease 05/2013; 45(12). DOI:10.1016/j.dld.2013.03.019 · 2.96 Impact Factor
  • Source
    • "Insulin encapsulation efficiency as recorded for the PLA nanoparticles was 33%, while that of the copolymeric PLA-PEG nanoparticles increased from 38% to 58% with an increase in the PEG chain length from 575 to 4000 g/mol (Table 2). Similar results have been reported by Akbarzadeh et al, who studied the encapsulation efficiency of doxorubicin in Fe3O4-PLGA-PEG nanoparticles synthesized with PEG 2000, 3000, and 4000 g/mol.48 This enhancement in insulin encapsulation efficiency, as observed for nanoparticles with low molecular weight PEG compared with that of PLA nanoparticles, occurred due to the fact that PEG 575 introduced flexible chains into the copolymer. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Poly(ethylene glycol) (PEG) and polylactic acid (PLA)-based copolymeric nanoparticles were synthesized and investigated as a carrier for prolonged delivery of insulin via the parenteral route. Insulin loading was simultaneously achieved with particle synthesis using a double emulsion solvent evaporation technique, and the effect of varied PEG chain lengths on particle size and insulin loading efficiency was determined. The synthesized copolymer and nanoparticles were analyzed by standard polymer characterization techniques of gel permeation chromatography, dynamic light scattering, nuclear magnetic resonance, and transmission electron microscopy. In vitro insulin release studies performed under simulated conditions provided a near zero-order release pattern up to 10 days. In vivo animal studies were undertaken with varied insulin loads of nanoparticles administered subcutaneously to fed diabetic rabbits and, of all doses administered, nanoparticles containing 50 IU of insulin load per kg body weight controlled the blood glucose level within the physiologically normal range of 90-140 mg/dL, and had a prolonged effect for more than 7 days. Histopathological evaluation of tissue samples from the site of injection showed no signs of inflammation or aggregation, and established the nontoxic nature of the prepared copolymeric nanoparticles. Further, the reaction profiles for PLA-COOH and NH(2)-PEGDA-NH(2) were elucidated using molecular mechanics energy relationships in vacuum and in a solvated system by exploring the spatial disposition of various concentrations of polymers with respect to each other. Incorporation of insulin within the polymeric matrix was modeled using Connolly molecular surfaces. The computational results corroborated the experimental and analytical data. The ability to control blood glucose levels effectively coupled with the nontoxic behavior of the nanoparticles indicates that these nanoparticles are a potential candidate for insulin delivery.
    International Journal of Nanomedicine 02/2013; 8:505-20. DOI:10.2147/IJN.S38011 · 4.38 Impact Factor
  • Source
    • "In particular, MNPs are being extensively utilized as a magnetic resonance imaging contrast agents to detect metastatic infestation in lymph nodes (such as Combidex®, Resovist®, Endorem®, Sinerem®), give information about tumor angiogenesis, identify dangerous atherosclerosis plaques, follow stem cell therapy, and in other biomedical research [8-11]. Further, functionalized multimodal MNPs are being widely explored for numerous other biomedical applications including magnetic guidance of drugs encapsulated by magnetic particles to target tissues (for example tumor) where they are retained for a controlled treatment period [2,12-22]. Thus, fabrication of MNPs as drug conjugates has the potential to greatly benefit inflammatory disease and cancer treatments, and diagnostics. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Results Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. Conclusion We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route.
    Journal of Nanobiotechnology 01/2013; 11(1):1. DOI:10.1186/1477-3155-11-1 · 4.12 Impact Factor
Show more