Article

Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes.

Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
The EMBO Journal (Impact Factor: 10.75). 02/2012; 31(7):1798-810. DOI: 10.1038/emboj.2012.27
Source: PubMed

ABSTRACT Reprogramming gene expression is crucial for DNA replication stress response. We used quantitative proteomics to establish how the transcriptional response results in changes in protein levels. We found that expression of G1/S cell-cycle targets are strongly up-regulated upon replication stress, and show that MBF, but not SBF genes, are up-regulated via Rad53-dependent inactivation of the MBF co-repressor Nrm1. A subset of G1/S genes was found to undergo an SBF-to-MBF switch at the G1/S transition, enabling replication stress-induced transcription of genes targeted by SBF during G1. This subset of G1/S genes is characterized by an overlapping Swi4/Mbp1-binding site and is enriched for genes that cause a cell cycle and/or growth defect when overexpressed. Analysis of the prototypical switch gene TOS4 (Target Of SBF 4) reveals its role as a checkpoint effector supporting the importance of this distinct class of G1/S genes for the DNA replication checkpoint response. Our results reveal that replication stress induces expression of G1/S genes via the Rad53-MBF pathway and that an SBF-to-MBF switch characterizes a new class of genes that can be induced by replication stress.

0 Bookmarks
 · 
165 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior.ResultsHere we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping, but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression.Conclusions Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.
    Genome Biology 09/2014; 15(9):446. · 10.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Checkpoints monitor critical cell cycle events such as chromosome duplication and segregation. They are highly conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. During S phase, cells also provide a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication forks. The DNA replication checkpoint is crucial for maintaining genome stability, because replication forks become vulnerable to collapse when they encounter obstacles such as nucleotide adducts, nicks, RNA-DNA hybrids, or stable protein-DNA complexes. These can be exogenously induced or can arise from endogenous cellular activity. Here, we summarize the initiation and transduction of the replication checkpoint as well as its targets, which coordinate cell cycle events and DNA replication fork stability.
    Genes. 09/2013; 4(3):388-434.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
    Genetics 01/2014; 196(1):65-90. · 4.87 Impact Factor

Full-text

Download
82 Downloads
Available from
Jun 3, 2014