A role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol-4,5-bisphosphate to the cleavage furrow during cytokinesis.

Lipid Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
Molecular and Cellular Biology (Impact Factor: 5.04). 02/2012; 32(8):1396-407. DOI: 10.1128/MCB.06113-11
Source: PubMed

ABSTRACT Cytokinesis is a crucial step in the creation of two daughter cells by the formation and ingression of the cleavage furrow. Here, we show that sphingomyelin (SM), one of the major sphingolipids in mammalian cells, is required for the localization of phosphatidylinositol-4,5-bisphosphate (PIP(2)) to the cleavage furrow during cytokinesis. Real-time observation with a labeled SM-specific protein, lysenin, revealed that SM is concentrated in the outer leaflet of the furrow at the time of cytokinesis. Superresolution fluorescence microscopy analysis indicates a transbilayer colocalization between the SM-rich domains in the outer leaflet and PIP(2)-rich domains in the inner leaflet of the plasma membrane. The depletion of SM disperses PIP(2) and inhibits the recruitment of the small GTPase RhoA to the cleavage furrow, leading to abnormal cytokinesis. These results suggest that the formation of SM-rich domains is required for the accumulation of PIP(2) to the cleavage furrow, which is a prerequisite for the proper translocation of RhoA and the progression of cytokinesis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick disease type A (NPDA) is a fatal disease due to mutations in the acid sphingomyelinase (ASM) gene, which triggers the abnormal accumulation of sphingomyelin (SM) in lysosomes and the plasma membrane of mutant cells. Although the disease affects multiple organs, the impact on the brain is the most invalidating feature. The mechanisms responsible for the cognitive deficits characteristic of this condition are only partially understood. Using mice lacking the ASM gene (ASMKO), a model system in NPDA research, we here report that high sphingomyelin levels in mutant neurons lead to low synaptic levels of phosphoinositide PI(4,5)P2 and reduced activity of its hydrolyzing phosphatase PLCγ, which are key players in synaptic plasticity events. In addition, mutant neurons have reduced levels of membrane-bound MARCKS, a protein required for PI(4,5)P2 membrane clustering and hydrolysis. Intracerebroventricular infusion of a peptide that mimics the effector domain of MARCKS increases the content of PI(4,5)P2 in the synaptic membrane and ameliorates behavioral abnormalities in ASMko mice.
    Neurobiology of Disease 09/2014; · 5.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelia are compact tissues comprising juxtaposed cells that function as mechanical and chemical barriers between the body and the environment. This barrier relies, in part, on adhesive contacts within adherens junctions, which are formed and stabilized by E-cadherin and catenin proteins linked to the actomyosin cytoskeleton. During development and throughout adult life, epithelia are continuously growing or regenerating, largely as a result of cell division. Although persistence of adherens junctions is needed for epithelial integrity, these junctions are continually remodelled during cell division. In this Commentary, we will focus on cytokinesis, the final step of mitosis, a multiparty phenomenon in which the adherens junction belt plays an essential role and during which a new cell-cell interface is generated between daughter cells. This new interface is the site of intense remodelling, where new adhesive contacts are assembled and cell polarity is transmitted from mother to daughter cells, ultimately becoming the site of cell signalling.
    Journal of Cell Science 10/2014; · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression.
    PLoS Pathogens 12/2014; 10(12):e1004574. · 8.14 Impact Factor


Available from