Field emission from in situ-grown vertically aligned SnO2 nanowire arrays.

State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China. .
Nanoscale Research Letters (Impact Factor: 2.52). 02/2012; 7:117. DOI: 10.1186/1556-276X-7-117
Source: PubMed

ABSTRACT Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we present a method to produce TiO2 nanocrystals coated by thin layer of graphitic carbon. The coating process was prepared via chemical vapor deposition (CVD) with acetylene used as a carbon feedstock with TiO2 used as a substrate. Different temperatures (400°C and 500°C) and times (10, 20, and 60 s) of reaction were explored. The prepared nanocomposites were investigated by means of transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy/diffuse reflectance spectroscopy and ultraviolet-vis (UV-vis)/diffuse reflectance spectroscopy. Furthermore, photocatalytic activity of the materials was investigated under visible and UV-vis light irradiation in the process of phenol decomposition. It was found that TiO2 modification with carbon resulted in a significant increase of photoactivity under visible irradiation and decrease under UV-vis light irradiation. Interestingly, a shorter CVD time and higher process temperature resulted in the preparation of the samples exhibiting higher activity in the photocatalytic process under visible light irradiation.
    Nanoscale Research Letters 04/2012; 7(1):235. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices.
    Nanoscale Research Letters 04/2012; 7:220. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the photo-electric response and charge carriers transport can be influenced greatly by the density and spacing of the ZnO nanorod arrays, controlling of these geometric parameters precisely is highly desirable but rather challenging in practice. Here, we fabricated patterned ZnO nanorod arrays with different density and spacing distance on silicon (Si) substrate by electron beam lithography (EBL) method combined with the subsequent hydrothermal reaction process. By using the EBL method, patterned ZnO seed layers with different areas and spacing distances were obtained firstly. ZnO nanorod arrays with different density and various morphologies were obtained by the subsequent hydrothermal growth process. The combination of EBL and hydrothermal growth process was very attractive and made us could control the geometric parameters of ZnO nanorod arrays expediently. Finally, the vertical transport properties of the patterned ZnO nanorod arrays were investigated through the micro probe station equipment and the I-V measurement results indicated that back-to-back Schottky contacts with different barriers height were formed in dark conditions. Under UV light illumination, the patterned ZnO nanorod arrays showed a high UV light sensitivity, and the response ratio was about 104. The controllable fabrication of patterned ZnO nanorod arrays and understanding for their photo-electric transport properties were helpful to improve the performance of nanodevices based on them.
    Nanoscale Research Letters 05/2012; 7(1):246. · 2.52 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014