Article

Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders.

Metabolism Unit, National Institute on Aging, Baltimore, MD 21224, USA.
Current Alzheimer research (Impact Factor: 4.97). 01/2012; 9(1):5-17.
Source: PubMed

ABSTRACT Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.

1 Bookmark
 · 
304 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus) is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behavior and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD.
    Frontiers in Aging Neuroscience 09/2014; · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
    Neuroscience Bulletin 03/2014; · 1.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the population of the world ages, the prevalence of neurodegenerative disease continues to rise, accompanied by increases in disease burden related to obesity and metabolic disorders. Thus, it will be essential to develop tools for preventing and slowing the progression of these major disease entities. Epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. Experimentally, the fat-derived hormone leptin has been shown to act as a neuroprotective agent in various animal models of dementia, toxic insults, ischemia/reperfusion, and other neurodegenerative processes. Specifically, leptin minimizes neuronal damage induced by neurotoxins and pro-apoptotic conditions. Leptin has also demonstrated considerable promise in animal models of obesity and metabolic disorders via modulation of glucose homeostasis and energy intake. However, since obesity is known to induce leptin resistance, we hypothesize that resistance to the neuroprotective effects of leptin contributes to the pathogenesis of obesity-associated neurodegenerative diseases. This review aims to explore the literature pertinent to the role of leptin in the protection of neurons from the toxic effects of aging, obesity and metabolic disorders, to investigate the physiological state of leptin resistance and its causes, and to consider how leptin might be employed therapeutically in the prevention and treatment of neurodegenerative disease.
    Neurobiology of Disease 04/2014; · 5.62 Impact Factor

Full-text

View
116 Downloads
Available from
May 20, 2014