Protein Kinase C-Delta Mediates Adventitial Cell Migration Through Regulation of Monocyte Chemoattractant Protein-1 Expression in a Rat Angioplasty Model

Division of Vascular Surgery, University of Wisconsin Madison, 53705, USA.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 5.53). 02/2012; 32(4):943-54. DOI: 10.1161/ATVBAHA.111.244921
Source: PubMed

ABSTRACT The adventitia is increasingly recognized as an important player during the development of intimal hyperplasia. However, the mechanism of adventitial cell recruitment to the subintimal space remains largely undefined. We have shown previously that gene transfer of protein kinase C-delta (PKCδ) increases apoptosis of smooth muscle cells following balloon injury. In the current study, we investigated a potential role of PKCδ in regulating the recruitment of adventitial cells.
Conditioned media from PKCδ-overexpressing smooth muscle cells stimulated migration and CCR2 expression of adventitial fibroblasts through a MCP-1 dependent mechanism. Following balloon injury of rat carotid arteries, overexpression of PKCδ in smooth muscle cells significantly increased MCP-1 and CCR2 expression and the number of adventitia-originated cells detected in the neointima. Administration of an anti-MCP-1 antibody markedly diminished the recruitment of adventitial cells. Combined PKCδ overexpression and anti-MCP-1 inhibited intimal hyperplasia more effectively than either approach alone.
Our data suggest that PKCδ regulates recruitment of adventitial cells to the neointima via a mechanism involving upregulation of the MCP-1/CCR2 signaling axis in injured arteries. Blockage of MCP-1 while enhancing apoptosis may serve as a potential therapeutic strategy to attenuate intimal hyperplasia.

Download full-text


Available from: Alan Daugherty, Jul 06, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adventitia acts as an active participant in vascular inflammation but the precise mechanism underlying adventitia-mediated vascular inflammation is not fully understood. In this study, we sought to determine whether vascular endothelial growth factor (VEGF) regulates osteopontin (OPN) expression through Flt-1 in adventitial fibroblasts (AFs) to mediate vascular inflammation and neointima formation. In primary cultured AFs, VEGF increased intracellular and secreted OPN expression in a time- and dose-dependent manner, which was effectively suppressed by a specific anti-Flt-1 hexapeptide. Interestingly, VEGF treatment of AFs enhanced the capability of AF-conditioned medium to stimulate macrophages chemotaxis, and this effect was attenuated after blockade of OPN from AF-conditioned medium. Furthermore, perivascular delivery of anti-Flt-1 peptide preferentially concentrated in the adventitia resulted in a decrease of neointima formation after balloon injury in carotid arteries. The inhibition of neointima formation was preceded by significant reduction of VEGF and OPN expression with concurrent macrophage infiltration into adventitia after injury. Activation of extracellular signal-regulated kinase 1/2 pathway was involved in OPN upregulation and macrophage chemotaxis. These results demonstrate that VEGF/Flt-1 signaling plays a significant role in vascular inflammation and neointima formation by regulating OPN expression in AFs and provide insight into Flt-1 as a potential therapeutic target for vascular diseases.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2012; 32(9):2250-8. DOI:10.1161/ATVBAHA.112.255216 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis of smooth muscle cells (SMCs) is a prominent pathological characteristic of abdominal aortic aneurysm (AAA). We have previously shown that SMC apoptosis stimulates proinflammatory signaling in a mouse model of AAA. Here, we test whether protein kinase C-δ (PKCδ), an apoptotic mediator, participates in the pathogenesis of AAA by regulating apoptosis and proinflammatory signals. Mouse experimental AAA is induced by perivascular administration of CaCl(2). Mice deficient in PKCδ exhibit a profound reduction in aneurysmal expansion, SMC apoptosis, and transmural inflammation as compared with wild-type littermates. Delivery of PKCδ to the aortic wall of PKCδ(-/-) mice restores aneurysm, whereas overexpression of a dominant negative PKCδ mutant in the aorta of wild-type mice attenuates aneurysm. In vitro, PKCδ(-/-) aortic SMCs exhibit significantly impaired monocyte chemoattractant protein-1 production. Ectopic administration of recombinant monocyte chemoattractant protein-1 to the arterial wall of PKCδ(-/-) mice restores inflammatory response and aneurysm development. PKCδ is an important signaling mediator for SMC apoptosis and inflammation in a mouse model of AAA. By stimulating monocyte chemoattractant protein-1 expression in aortic SMCs, upregulated PKCδ exacerbates the inflammatory process, in turn perpetuating elastin degradation and aneurysmal dilatation. Inhibition of PKCδ may serve as a potential therapeutic strategy for AAA.
    Arteriosclerosis Thrombosis and Vascular Biology 08/2012; 32(10):2493-502. DOI:10.1161/ATVBAHA.112.255661 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New therapeutic approaches that eliminate or reduce the occurrence of intimal hyperplasia following balloon angioplasty could improve the efficacy of vascular interventions and improve the quality of life of patients suffering from vascular diseases. Here, we report that treatment of arteries using catheter balloons coated with thin polyelectrolyte-based films ('polyelectrolyte multilayers', PEMs) can substantially reduce intimal hyperplasia in an in vivo rat model of vascular injury. We used a layer-by-layer (LbL) process to coat the surfaces of inflatable catheter balloons with PEMs composed of nanolayers of a cationic poly(β-amino ester) (polymer 1) and plasmid DNA (pPKCδ) encoding the δ isoform of protein kinase C (PKCδ), a regulator of apoptosis and other cell processes that has been demonstrated to reduce intimal hyperplasia in injured arterial tissue when administered via perfusion using viral vectors. Insertion of balloons coated with polymer 1/pPKCδ multilayers into injured arteries for 20 min resulted in local transfer of DNA and elevated levels of PKCδ expression in the media of treated tissue three days after delivery. IFC and IHC analysis revealed these levels of expression to promote downstream cellular processes associated with up-regulation of apoptosis. Analysis of arterial tissue 14 days after treatment revealed polymer 1/pPKCδ-coated balloons to reduce the occurrence of intimal hyperplasia by ∼60% compared to balloons coated with films containing empty plasmid vectors. Our results demonstrate the potential therapeutic value of this nanotechnology-based approach to local gene delivery in the clinically important context of balloon-mediated vascular interventions. These PEM-based methods could also prove useful for other in vivo applications that require short-term, surface-mediated transfer of plasmid DNA.
    Biomaterials 10/2012; 34(1). DOI:10.1016/j.biomaterials.2012.09.010 · 8.31 Impact Factor