Article

Protein Kinase C-Delta Mediates Adventitial Cell Migration Through Regulation of Monocyte Chemoattractant Protein-1 Expression in a Rat Angioplasty Model

Division of Vascular Surgery, University of Wisconsin Madison, 53705, USA.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 6.34). 02/2012; 32(4):943-54. DOI: 10.1161/ATVBAHA.111.244921
Source: PubMed

ABSTRACT The adventitia is increasingly recognized as an important player during the development of intimal hyperplasia. However, the mechanism of adventitial cell recruitment to the subintimal space remains largely undefined. We have shown previously that gene transfer of protein kinase C-delta (PKCδ) increases apoptosis of smooth muscle cells following balloon injury. In the current study, we investigated a potential role of PKCδ in regulating the recruitment of adventitial cells.
Conditioned media from PKCδ-overexpressing smooth muscle cells stimulated migration and CCR2 expression of adventitial fibroblasts through a MCP-1 dependent mechanism. Following balloon injury of rat carotid arteries, overexpression of PKCδ in smooth muscle cells significantly increased MCP-1 and CCR2 expression and the number of adventitia-originated cells detected in the neointima. Administration of an anti-MCP-1 antibody markedly diminished the recruitment of adventitial cells. Combined PKCδ overexpression and anti-MCP-1 inhibited intimal hyperplasia more effectively than either approach alone.
Our data suggest that PKCδ regulates recruitment of adventitial cells to the neointima via a mechanism involving upregulation of the MCP-1/CCR2 signaling axis in injured arteries. Blockage of MCP-1 while enhancing apoptosis may serve as a potential therapeutic strategy to attenuate intimal hyperplasia.

Full-text

Available from: Alan Daugherty, Apr 01, 2015

Click to see the full-text of:

Article: Protein Kinase C-Delta Mediates Adventitial Cell Migration Through Regulation of Monocyte Chemoattractant Protein-1 Expression in a Rat Angioplasty Model

2.26 MB

See full-text
0 Bookmarks
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that in the presence of elevated Smad3, transforming growth factor-β (TGF-β) transforms from an inhibitor to a stimulant of vascular smooth muscle cell (SMC) proliferation and intimal hyperplasia (IH). Here we identify a novel mechanism through which TGF-β/Smad3 also exacerbates IH by inhibiting SMC apoptosis. We found that TGF-β treatment led to inhibition of apoptosis in rat SMCs following viral expression of Smad3. Conditioned media from these cells when applied to naive SMCs recapitulated this effect, suggesting an autocrine pathway through a secreted factor. Gene array of TGF-β/Smad3-treated cells revealed enhanced expression of vascular endothelial growth factor (VEGF), a known inhibitor of endothelial cell apoptosis. We then evaluated whether VEGF is the secreted mediator responsible for TGF-β/Smad3 inhibition of SMC apoptosis. In TGF-β/Smad3-treated cells, VEGF mRNA and protein as well as VEGF secretion were increased. Moreover, recombinant VEGF-A inhibited SMC apoptosis and a VEGF-A-neutralizing antibody reversed the inhibitory effect of conditioned media on SMC apoptosis. Stimulation of SMCs with TGF-β led to the formation of a complex of Smad3 and hypoxia-inducible factor-1α (HIF-1α) that in turn activated the VEGF-A promoter and transcription. In rat carotid arteries following arterial injury, Smad3 and VEGF-A expression were upregulated. Moreover, Smad3 gene transfer further enhanced VEGF expression as well as inhibited SMC apoptosis. Finally, blocking either the VEGF receptor or Smad3 signaling in injured carotid arteries abrogated the inhibitory effect of Smad3 on vascular SMC apoptosis. Taken together, our study reveals that following angioplasty, elevation of both TGF-β and Smad3 leads to SMC secretion of VEGF-A that functions as an autocrine inhibitor of SMC apoptosis. This novel pathway provides further insights into the role of TGF-β in the development of IH.
    Cell Death & Disease 07/2014; 5:e1317. DOI:10.1038/cddis.2014.282 · 5.18 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intimal hyperplasia produces restenosis (re-narrowing) of the vessel lumen following vascular intervention. Drugs that inhibit intimal hyperplasia have been developed, however there is currently no clinical method of perivascular drug-delivery to prevent restenosis following open surgical procedures. Here we report a poly(ε-caprolactone) (PCL) sheath that is highly effective in preventing intimal hyperplasia through perivascular delivery of rapamycin. We first screened a series of bioresorbable polymers, i.e., poly(lactide-co-glycolide) (PLGA), poly(lactic acid) (PLLA), PCL, and their blends, to identify desired release kinetics and sheath physical properties. Both PLGA and PLLA sheaths produced minimal (<30%) rapamycin release within 50days in PBS buffer. In contrast, PCL sheaths exhibited more rapid and near-linear release kinetics, as well as durable integrity (>90days) as evidenced in both scanning electron microscopy and subcutaneous embedding experiments. Moreover, a PCL sheath deployed around balloon-injured rat carotid arteries was associated with a minimum rate of thrombosis compared to PLGA and PLLA. Morphometric analysis and immunohistochemistry revealed that rapamycin-loaded perivascular PCL sheaths produced pronounced (85%) inhibition of intimal hyperplasia (0.15±0.05 vs 1.01±0.16), without impairment of the luminal endothelium, the vessel's anti-thrombotic layer. Our data collectively show that a rapamycin-loaded PCL delivery system produces substantial mitigation of neointima, likely due to its favorable physical properties leading to a stable yet flexible perivascular sheath and steady and prolonged release kinetics. Thus, a PCL sheath may provide useful scaffolding for devising effective perivascular drug delivery particularly suited for preventing restenosis following open vascular surgery.
    Journal of Controlled Release 05/2014; DOI:10.1016/j.jconrel.2014.05.017 · 7.26 Impact Factor