STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability

Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 02/2012; 109(8):2860-5. DOI: 10.1073/pnas.1120589109
Source: PubMed


Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

33 Reads
  • Source
    • "Despite this high prevalence pharmacological means to inhibit KRAS have yet to emerge. Small molecule inhibition of STK33 in vitro did not show sufficient effect on cancer cell-viability, however, leading the authors to speculate on an interaction between mutant KRAS and STK33 independent of its kinase activity [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent genome wide association studies (GWAS) have identified a locus on chromosome 11p15.5, closely associated with serine/threonine kinase 33 (STK33), to be associated with body mass. STK33, a relatively understudied protein, has been linked to KRAS mutation-driven cancers and explored as a potential antineoplastic drug target. The strongest association with body mass observed at this loci in GWAS was rs4929949, a single nucleotide polymorphism located within intron 1 of the gene encoding STK33. The functional implications of rs4929949 or related variants have not been explored as of yet. We have genotyped rs4929949 in two cohorts, an obesity case-control cohort of 991 Swedish children, and a cross-sectional cohort of 2308 Greek school children. We found that the minor allele of rs4929949 was associated with obesity in the cohort of Swedish children and adolescents (OR = 1.199 (95%CI: 1.002-1.434), p = 0.047), and with body mass in the cross-sectional cohort of Greek children (β = 0.08147 (95% CI: 0.1345-0.1618), p = 0.021). We observe the effects of rs4929949 on body mass to be detectable already at adolescence. Subsequent analysis did not detect any association of rs4929949 to phenotypic measurements describing body adiposity or to metabolic factors such as insulin levels, triglycerides and insulin resistance (HOMA).
    PLoS ONE 08/2013; 8(8):e71353. DOI:10.1371/journal.pone.0071353 · 3.23 Impact Factor
  • Source
    • "Like shRNA-mediated knockdown, HSP90 inhibitors target mutant KRAS-driven cancer cells through depletion of the entire STK33 protein. This property may be of particular relevance in view of recent observations that selective inhibition of STK33 enzymatic activity does not kill certain KRAS mutant cancer cell lines (Babij et al., 2011; Luo et al., 2012), indicating that nonkinase activities of STK33 may be responsible for its observed essentiality in RNAi-based studies, an important disparity that has also been reported for Aurora B and PI3 kinases (Weiss et al., 2007). More generally, our results emphasize the need for predictive markers of benefit from HSP90 inhibitors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous efforts to develop drugs that directly inhibit the activity of mutant KRAS, the most commonly mutated human oncogene, have not been successful. Cancer cells driven by mutant KRAS require expression of the serine/threonine kinase STK33 for their viability and proliferation, identifying STK33 as a context-dependent therapeutic target. However, specific strategies for interfering with the critical functions of STK33 are not yet available. Here, using a mass spectrometry-based screen for STK33 protein interaction partners, we report that the HSP90/CDC37 chaperone complex binds to and stabilizes STK33 in human cancer cells. Pharmacologic inhibition of HSP90, using structurally divergent small molecules currently in clinical development, induced proteasome-mediated degradation of STK33 in human cancer cells of various tissue origin in vitro and in vivo, and triggered apoptosis preferentially in KRAS mutant cells in an STK33-dependent manner. Furthermore, HSP90 inhibitor treatment impaired sphere formation and viability of primary human colon tumor-initiating cells harboring mutant KRAS. These findings provide mechanistic insight into the activity of HSP90 inhibitors in KRAS mutant cancer cells, indicate that the enhanced requirement for STK33 can be exploited to target mutant KRAS-driven tumors, and identify STK33 depletion through HSP90 inhibition as a biomarker-guided therapeutic strategy with immediate translational potential.
    Journal of Experimental Medicine 03/2012; 209(4):697-711. DOI:10.1084/jem.20111910 · 12.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite great advances in our understanding of the driving events involved in malignant transformation, only a small number of oncogenic drivers have been targeted and translated into tangible clinical benefit. Moreover, even when a targeted therapy can be shown to effectively inhibit an oncogenic driver, leading to cancer remission, disease persistence and/or relapse is typically inevitable. Reemergence of the cancer can result from either intrinsic or acquired resistance mechanisms that result in failure to eliminate all cancer cells. Intrinsic mechanisms of resistance include tumor heterogeneity and pathways that can compensate for the inhibition of the oncogenic driver. Acquired resistance mechanisms include mutation of the oncogenic driver to directly prevent drug-mediated inhibition and the activation of compensatory survival pathways. RNA interference (RNAi)-based screening provides a powerful approach for the interrogation of both intrinsic and acquired resistance mechanisms. The availability of short interfering (si)RNA libraries targeting all human and mouse genes has made it possible to perform large-scale unbiased screens to identify pathways that are specifically required in cancer cells of particular genotypes or following particular treatments, facilitating the design of potential new therapeutic strategies that may limit resistance mechanisms. In this review, we will discuss how RNAi screens can be used to uncover critical growth and survival pathways and aid in the identification of novel therapeutic targets for improved treatment of hematological malignancies.
    Immunologic Research 09/2012; 55(1-3). DOI:10.1007/s12026-012-8353-z · 3.10 Impact Factor
Show more