STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability.

Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2012; 109(8):2860-5. DOI: 10.1073/pnas.1120589109
Source: PubMed

ABSTRACT Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The role of serine/threonine kinase 33 (STK33) gene in tumorigenesis is still controversial. This study was aimed to investigate whether STK33 had the effect on hypopharyngeal squamous cell carcinoma (HSCC) and relevant genes, as well as the potential relation to ERK1/2 pathway.Methods Immunohistochemistry was performed to investigate STK33 expression in human HSCC specimens. MTT, immunofluorescence, clone formation and matrigel invasion assays were employed to detect the effects of STK33 knockdown (STK33-RNAi) and/or PD98059 on major oncogenic properties of a HSCC cell line (Fadu), while, real-time PCR and western blot were used to examine the expressions of relevant genes.ResultsSTK33 was over-expressed in HSCC specimens, which was significantly associated with certain clinicopathological parameters. STK33-RNAi in Fadu cells resulted in inhibition of proliferation, induction of apoptosis, reduction of clone formation, and decline in the migration and invasion. These effects were potentiated by administration of PD98059. Mechanistic studies revealed that STK33-RNAi led to an increase in Caspse-3, Nm-23-H1 and E-Cadherin expressions and a reduction in Bcl-2, Ki-67 and Vimentin expressions. Moreover, PD98059 significantly reduced both ERK1/2 and STK33 expressions in Fadu cells.ConclusionsSTK33 is a potential oncogene and a promising diagnostic marker for HSCC. STK33 may promote tumorigenesis and progression of HSCC, and serve as a valuable molecular target for treatment of HSCC.
    BMC Cancer 01/2015; 15(1):13. DOI:10.1186/s12885-015-1009-3 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Translating existing and emerging knowledge of cancer biology into effective novel therapies remains a great challenge in drug discovery. A firm understanding of the target biology, confidence in the supporting preclinical research, and access to diverse chemical matter is required to lower attrition rates and prosecute targets effectively. Understanding past successes and failures will aid in refining this process to deliver further therapeutic benefit to patients. In this review, we suggest that early oncology drug discovery should focus on selection and prosecution of cancer targets with strong disease biology rather than on more chemically "druggable" targets with only modest disease-linkage. This approach offers higher potential benefit but also increases the need for innovative and alternative approaches. These include using different methods to validate novel targets and identify chemical matter, as well as raising the standards and our interpretation of the scientific literature. The combination of skills required for this emphasizes the need for broader early collaborations between academia and industry. © 2015 Society for Laboratory Automation and Screening.
    Journal of Biomolecular Screening 01/2015; DOI:10.1177/1087057114564349 · 2.01 Impact Factor
  • New England Journal of Medicine 10/2014; 371(18):1725-35. DOI:10.1056/NEJMra1407390 · 54.42 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014