Article

From transcriptional profiling to tumor biology in pheochromocytoma and paraganglioma.

Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
Endocrine Pathology (Impact Factor: 1.6). 02/2012; 23(1):15-20. DOI: 10.1007/s12022-012-9195-x
Source: PubMed

ABSTRACT This review summarizes the way in which inherited mutations define global gene expression in pheochromocytoma (PCC) and paraganglioma (PGL), and how the use of gene expression analysis has advanced our understanding of these diseases. The biology of PCC and PGL tumors is diverse and it has become clear that there is no apparent single biology that defines these tumors. However, over the last 20 years, our understanding of the biology of PGL and PCC has been considerably advanced by the discovery of inherited mutations that predispose individuals to developing the disease. More recently, the use of transcriptomics to stratify tumors based on their gene expression profiles has, in particular, played a vital role in delineating novel mutations involved in the pathogenesis of these tumors. In this review, we describe our current understanding of the biology of cluster 1 (pseudohypoxic) tumors and how mutations that result in the pseudohypoxic phenotype that leads to changes in global gene expression. We also review the advances in our understanding of cluster 2 tumors, and in particular, focus on the newly described MAX tumors.

0 Bookmarks
 · 
68 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Head and neck paragangliomas (HNPGLs) account for approximately 3% of all paragangliomas (PGLs). Most often, HNPGLs are benign, nonsecreting, and slowly progressing. The initial physical examination and biochemical diagnosis usually adds very little to the proper diagnosis of these tumors, and, therefore, radiologists and nuclear medicine physicians play a pivotal role in providing the initial diagnosis, the locoregional staging, and the plan for detecting potential multicentric or metastatic lesions. Based on several current studies, the most accurate use of HNPGL-specific initial and subsequent imaging modalities must be guided by the knowledge of genetics and the specifically measured biochemical profile of these tumors for the proper management of these patients. Thus, this short review article presents the application of the most up-to-date anatomical and functional imaging approaches to HNPGLs tightly linked to the clinical management of these patients. Based on the most recent studies, 18F-FDOPA PET/CT has been shown to be a useful addition to anatomical imaging in the preoperative localization and molecular assessment of HNPGLs. It is estimated that the frequency of metabolically active PGLs on 18F-FDOPA PET/CT in this region is higher than 90%. For patients with hereditary PGL syndromes, (18)F-FDG-PET/CT should be reserved. Imaging of somatostatin receptors using Octreoscan or 68Ga-labeled somatostatin analogues plays an important role for selecting patients for targeted radiation therapy. This review also concludes that it is expected that in the near future, these patients will indeed benefit from new diagnostic approaches based on the identification of new targets by molecular profiling studies that will result in the development of novel PGL-specific radiopharamceuticals.
    Seminars in nuclear medicine 11/2013; 43(6):462-473. · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the last decade there have been revolutionary breakthroughs in understanding the biology of pheochromocytomas and extra-adrenal paragangliomas. Discoveries of new susceptibility genes and genotype-phenotype correlations have led to the realization that appropriate patient care requires a complete integration of clinical, genetic, biochemical, imaging, and pathology findings. Clinical practice has in many cases not kept pace with the rate of discovery, underscoring a need for updated procedures for evaluation of patient specimens and reporting of data. We therefore propose a new synoptic reporting approach for pheochromocytomas and extra-adrenal paragangliomas that will provide clear and uniform information to pathologists and clinicians, in order to advance the diagnosis of these neoplasms and optimize patient care.
    Archives of pathology & laboratory medicine 02/2014; 138(2):182-8. · 2.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Warburg's metabolic hypothesis is based on the assumption that a cancer cell's respiration must be under attack, leading to its damage, in order to obtain increased glycolysis. Although this may not apply to all cancers, there is some evidence proving that primarily abnormally functioning mitochondrial complexes are indeed related to cancer development. Thus, mutations in complex II (succinate dehydrogenase (SDH)) lead to the formation of pheochromocytoma/paraganglioma. Mutations in one of the SDH genes (SDHx mutations) lead to succinate accumulation associated with very low fumarate levels, increased glutaminolysis, the generation of reactive oxygen species (ROS), and pseudohypoxia. This results in significant changes in signaling pathways (many of them dependent on the stabilization of hypoxia-inducible factor (HIF)) including oxidative phosphorylation, glycolysis, specific expression profiles, as well as genomic instability and increased mutability resulting in tumor development. Although there is currently no very effective therapy for SDHx-related metastatic pheochromocytomas/paragangliomas, targeting their fundamental metabolic abnormalities may provide a unique opportunity for the development of novel and more effective forms of therapy for these tumors.
    Endocrine Related Cancer 02/2014; · 5.26 Impact Factor