Article

Preparation and electrophoretic separation of Bodipy-Fl-labeled glycosphingolipids.

The University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN 46556, USA.
Journal of Chromatography A (Impact Factor: 4.61). 03/2012; 1229:268-73. DOI: 10.1016/j.chroma.2012.01.031
Source: PubMed

ABSTRACT Several glycosphingolipids were labeled with the fluorphore Bodipy-Fl and analyzed using capillary electrophoresis with laser-induced fluorescence detection. GM1-, LacCer-, and Cer-Bodipy-Fl were prepared through acylation using the N-hydroxysuccinimide ester of Bodipy-Fl. Several other glycosphingolipids including GT1a-, GD1a-, GM2-, GM3-, GD3-, and GlcCer-Bodipy-Fl were enzymatically synthesized. Micellar electrokinetic capillary chromatography with a TRIS/CHES/SDS/α-cyclodextrin buffer produced better separation than an established borate/deoxycholate/methyl-β-cyclodextrin buffer. The nine Bodipy-Fl-labeled glycosphingolipid standards were separated in under 5 min, theoretical plate counts were between 640,000 and 740,000, and the limit of detection was approximately 3 pM or 240 ymol analyte injected onto the capillary.

0 Bookmarks
 · 
239 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositides (PIs) and sphingolipids regulate many aspects of cell behavior and are often involved in disease processes such as oncogenesis. Capillary electrophoresis with laser induced fluorescence detection (CE-LIF) is emerging as an important tool for enzymatic assays of the metabolism of these lipids, particularly in cell-based formats. Previous separations of phosphoinositide lipids by CE required a complex buffer with polymer additives which had the disadvantages of high cost and/or short shelf life. Further a simultaneous separation of these classes of lipids has not been demonstrated in a robust buffer system. In the current work, a simple separation buffer based on NaH2PO4 and 1-propanol was optimized to separate two sphingolipids and multiple phosphoinositides by CE. The NaH2PO4 concentration, pH, 1-propanol fraction, and a surfactant additive to the buffer were individually optimized to achieve simultaneous separation of the sphingolipids and phosphoinositides. Fluorescein-labeled sphingosine (SFL) and sphingosine 1-phosphate (S1PFL), fluorescein-labeled phosphatidyl-inositol 4,5-bisphosphate (PIP2) and phosphatidyl-inositol 3,4,5-trisphosphate (PIP3), and bodipy-fluorescein (BFL)-labeled PIP2 and PIP3 were separated pairwise and in combination to demonstrate the generalizability of the method. Theoretical plate numbers achieved were as high as 2 × 105 in separating fluorophore-labeled PIP2 and PIP3. Detection limits for the 6 analytes were in the range of 10−18–10−20 mol. The method also showed high reproducibility, as the relative standard deviation of the normalized migration time for each analyte in the simultaneous separation of all 6 compounds was less than 1%. The separation of a mixture composed of diacylglycerol (DAG) and multiple phosphoinositides was also demonstrated. As a final test, fluorescent lipid metabolites formed within cells loaded with BFLPIP2 were separated from a cell lysate as well as a single cell. This simple and robust separation method for SFL and S1PFL and various metabolites of phosphoinositide-related signal transduction is expected to enable improved enzymatic assays for biological and clinical applications.
    Journal of Chromatography B 10/2012; 907:79-86. · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycerophospholipids are amphiphilic molecules possessing polar head groups with a glycerol backbone and non-polar variable long-chain fatty acids. Numerous molecular species are found in a single class of glycerophospholipid, conferring to these lipids a high structural diversity. They are major components of biological membranes and participate in important activities involving cell signaling and substrate transport. Sphingolipids consist of long-chain bases linked by an amide bond to a fatty acid and via the terminal hydroxyl group to complex carbohydrate or phosphorus moieties, constituting a complex family of compounds which also present an enormous structural variability. As important component of neuronal membranes, sphingolipids contribute to cellular diversity and functions and are associated with several neurodegenerative disorders. Moreover, they were studied in several foods due to their sensorial, reological and antioxidant characteristics. In this work, the most relevant information available on glycerophospholipid and sphingolipid analysis by CE is reviewed. CE is a very promising analytical technique in polar lipid analysis which provides high efficiency, relatively high resolution, and enormous versatility and requires small amounts of sample and solvent. MEKC and NACE methodologies have been developed as the most useful alternatives for these analyses by CE. Very interesting LODs have been achieved enabling the application of CE to the determination of glycerophospholipids and sphingolipids in several food and biological matrices.
    Electrophoresis 12/2013; · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two complementary one-pot, three component synthetic strategies based on copper(I)-catalyzed azide–alkyne cycloadditions (CuAAC) have been developed, which allow the efficient assembly of glycosyl-derived alkynes or azides with highly fluorescent boron–dipyrromethene (BODIPY) cores containing azido or alkyne moieties, respectively. The resulting carbohydrate–BODIPY derivatives display excellent photophysical and laser properties that relate to the spacer (amino group or aromatic ring) employed in each of the synthetic protocols.
    European Journal of Organic Chemistry 07/2014; · 3.15 Impact Factor

Full-text (2 Sources)

Download
55 Downloads
Available from
Jun 5, 2014