Article

Loss of function of the Cik1/Kar3 motor complex results in chromosomes with syntelic attachment that are sensed by the tension checkpoint.

Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, USA.
PLoS Genetics (Impact Factor: 8.52). 02/2012; 8(2):e1002492. DOI: 10.1371/journal.pgen.1002492
Source: PubMed

ABSTRACT The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromosomes, but a reliable method to induce syntelic attachments is not available in budding yeast. The spindle checkpoint can sense the lack of tension on chromosomes as well as detached kinetochores to prevent anaphase onset. In budding yeast Saccharomyces cerevisiae, tension checkpoint proteins Aurora/Ipl1 kinase and centromere-localized Sgo1 are required to sense the absence of tension but are dispensable for the checkpoint response to detached kinetochores. We have found that the loss of function of a motor protein complex Cik1/Kar3 in budding yeast leads to syntelic attachments. Inactivation of either the spindle or tension checkpoint enables premature anaphase entry in cells with dysfunctional Cik1/Kar3, resulting in co-segregation of sister chromatids. Moreover, the abolished Kar3-kinetochore interaction in cik1 mutants suggests that the Cik1/Kar3 complex mediates chromosome movement along microtubules, which could facilitate bipolar attachment. Therefore, we can induce syntelic attachments in budding yeast by inactivating the Cik1/Kar3 complex, and this approach will be very useful to study the checkpoint response to syntelic attachments.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Correct chromosome segregation is essential in order to prevent aneuploidy. To segregate sister chromatids equally to daughter cells, the sisters must attach to microtubules emanating from opposite spindle poles. This so-called biorientation manifests itself by increased tension and conformational changes across kinetochores and pericentric chromatin. Tensionless attachments are dissolved by the activity of the conserved mitotic kinase Aurora B/Ipl1, thereby promoting the formation of correctly attached chromosomes. Recruitment of the conserved centromeric protein shugoshin is essential for biorientation, but its exact role has been enigmatic. Here, we identify a novel function of shugoshin (Sgo1 in budding yeast) that together with the protein phosphatase PP2A-Rts1 ensures localization of condensin to the centromeric chromatin in yeast Saccharomyces cerevisiae. Failure to recruit condensin results in an abnormal conformation of the pericentric region and impairs the correction of tensionless chromosome attachments. Moreover, we found that shugoshin is required for maintaining Aurora B/Ipl1 localization on kinetochores during metaphase. Thus, shugoshin has a dual function in promoting biorientation in budding yeast: first, by its ability to facilitate condensin recruitment it modulates the conformation of the pericentric chromatin. Second, shugoshin contributes to the maintenance of Aurora B/Ipl1 at the kinetochore during gradual establishment of bipolarity in budding yeast mitosis. Our findings identify shugoshin as a versatile molecular adaptor that governs chromosome biorientation.
    PLoS Genetics 06/2014; 10(6):e1004411. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosome bipolar attachment is achieved when sister kinetochores are attached by microtubules emanating from opposite spindle poles, and this process is essential for faithful chromosome segregation during anaphase. A fundamental question in cell biology is how cells ensure that chromosome segregation only occurs after bipolar attachment. It is well documented that unattached kinetochores activate the spindle assembly checkpoint (SAC) to delay chromosome segregation. Therefore, the silencing of the SAC is thought to trigger anaphase onset, but how correct chromosome attachment is coupled with SAC silencing and the subsequent anaphase onset is poorly understood. The establishment of chromosome bipolar attachment not only results in the occupancy of kinetochores by microtubules but also applies tension on sister kinetochores. A long-standing debate is whether the kinetochore attachment (occupancy) or the tension silences the SAC. Recent works in budding yeast reveal the SAC silencing network SSN that prevents SAC silencing prior to tension generation at kinetochores. Therefore, this signaling pathway ensures that SAC silencing and the subsequent anaphase onset occur only after chromosome bipolar attachment applies tension on chromosomes. This review will summarize the recent advances in the understanding of the SAC silencing process.
    Cell cycle (Georgetown, Tex.) 04/2014; 13(11). · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Improper kinetochore attachments activate the spindle assembly checkpoint (SAC) to prevent anaphase onset, but it is poorly understood how this checkpoint is silenced to allow anaphase onset. Chromosome bipolar attachment applies tension on sister kinetochores, and the lack of tension delays anaphase onset. In budding yeast, the delay induced by tension defects depends on the intact SAC as well as increase in ploidy (Ipl1)/Aurora kinase and a centromere-associated protein ShuGOshin (Sgo1). Here we provide evidence indicating that Ipl1-dependent phosphorylation of the kinetochore protein Duo1 and Mps1 interacting (Dam1) prevents SAC silencing when tension is absent. The nonphosphorylatable dam1 mutant cells, as well as sgo1 mutant cells, are competent in SAC activation but unable to prevent SAC silencing in response to tension defects. We further found that phosphomimetic dam1 mutants exhibited delayed anaphase onset mainly due to the failure in SAC silencing, but destabilized kinetochore attachment likely plays a minor role in this delay. Because the tension resulting from bipolar attachment triggers the dephosphorylation of Dam1 by protein phosphatase 1, this dephosphorylation likely coordinates SAC silencing with chromosome bipolar attachment. Therefore, Sgo1, Ipl1 kinase, Dam1, and protein phosphatase 1 comprise the SAC silencing network that ensures the correct timing for anaphase onset.
    Proceedings of the National Academy of Sciences 12/2013; · 9.81 Impact Factor

Full-text (2 Sources)

Download
23 Downloads
Available from
Jun 5, 2014