Thiazolidinedione Treatment Decreases Oxidative Stress in Spontaneously Hypertensive Heart Failure Rats Through Attenuation of Inducible Nitric Oxide Synthase–Mediated Lipid Radical Formation

Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
Diabetes (Impact Factor: 8.1). 03/2012; 61(3):586-96. DOI: 10.2337/db11-1091
Source: PubMed


The current study was designed to test the hypothesis that inducible nitric oxide synthase (iNOS)-mediated lipid free radical overproduction exists in an insulin-resistant rat model and that reducing the accumulation of toxic metabolites is associated with improved insulin signaling and metabolic response. Lipid radical formation was detected by electron paramagnetic resonance spectroscopy with in vivo spin trapping in an obese rat model, with or without thiazolidinedione treatment. Lipid radical formation was accompanied by accumulation of toxic end products in the liver, such as 4-hydroxynonenal and nitrotyrosine, and was inhibited by the administration of the selective iNOS inhibitor 1400 W. The model showed impaired phosphorylation of the insulin signaling pathway. Ten-day rosiglitazone injection not only improved the response to an oral glucose tolerance test and corrected insulin signaling but also decreased iNOS levels. Similar to the results with specific iNOS inhibition, thiazolidinedione dramatically decreased lipid radical formation. We demonstrate a novel mechanism where a thiazolidinedione treatment can reduce oxidative stress in this model through reducing iNOS-derived lipid radical formation. Our results suggest that hepatic iNOS expression may underlie the accumulation of lipid end products and that reducing the accumulation of toxic lipid metabolites contributes to a better redox status in insulin-sensitive tissues.

Download full-text


Available from: Marcelo Bonini, Jun 09, 2014
  • Source

  • [Show abstract] [Hide abstract]
    ABSTRACT: Heart diseases, which are related to oxidative stress (OS), negatively affect millions of people from kids to the elderly. Titanium dioxide (TiO2) has widespread applications in our daily life, especially nanoscale TiO2. Compared to the high risk of particulate matter (⩽2.5 μm) in air to heart disease patients, related research of TiO2 on diseased body is still unknown, which suggest us to explore the potential effects of nanoscale and microscale TiO2 to heart under OS conditions. Here, we used alloxan to induce OS conditions in rat, and investigated the response of heart tissue to TiO2 in healthy and alloxan treated rats. Compared with NMs treatment only, the synergistic interaction between OS conditions and nano-TiO2 significantly reduced the heart-related function indexes, inducing pathological changes of myocardium with significantly increased levels of cardiac troponin I and creatine kinase-MB. In contrast with the void response of micro-TiO2 to heart functions in alloxan treated rats, aggravation of OS conditions might play an important role in cardiac injury after alloxan and nano-TiO2 dual exposure. Our results demonstrated that OS conditions enhanced the adverse effects of nano-TiO2 to heart, suggesting that the use of NMs in stressed conditions (e.g., drug delivery) needs to be carefully monitored.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 05/2013; 58. DOI:10.1016/j.fct.2013.04.050 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the protective effect of glucagon-like peptid-1 (GLP-1) against cardiac microvascular endothelial cell (CMECs) injured by high glucose. CMECs were isolated and cultured. Superoxide assay kit and dihydroethidine (DHE) staining were used to assess oxidative stress. TUNEL staining and caspase 3 expression were used to assess the apoptosis of CMECs. H89 was used to inhibit cAMP/PKA pathway; fasudil was used to inhibit Rho/ROCK pathway. The protein expressions of Rho, ROCK were examined by Western blot analysis. High glucose increased the production of ROS, the activity of NADPH, the apoptosis rate and the expression level of Rho/ROCK in CMECs, while GLP-1 decreased high glucose-induced ROS production, the NADPH activity and the apoptosis rate and the expression level of Rho/ROCK in CMECs, the difference were statistically significant (P<0.05). GLP-1 could protect the cardiac microvessels against oxidative stress and apoptosis. The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-dependent manner, resulting in a subsequent decrease in the expression of NADPH oxidase. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
    Asian Pacific Journal of Tropical Medicine 01/2015; 8(1):73-8. DOI:10.1016/S1995-7645(14)60191-7 · 0.93 Impact Factor