Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations

Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
Cell cycle (Georgetown, Tex.) (Impact Factor: 4.57). 02/2012; 11(4):675-82. DOI: 10.4161/cc.11.4.19146
Source: PubMed


The bone marrow (BM) niche is essential for lifelong hematopoietic stem cell (HSC) maintenance, proliferation and differentiation. Several BM cell types, including osteoblast lineage cells (OBC), mesenchymal stem cells (MSC) and endothelial cells (EC) have been implicated in supporting HSC location and function, but the relative importance of these cell types and their secreted ligands remain controversial. We recently found that the cell surface receptors Robo4 and CXCR4 cooperate to localize HSC to BM niches. We hypothesized that Slit2, a putative ligand for Robo4, cooperates with the CXCR4 ligand SDF1 to direct HSC to specific BM niche sites. Here, we have isolated OBC, MSC and EC by flow cytometry and determined their frequency within the bone marrow and the relative mRNA levels of Slit2, SDF1 and Robo4. We found that expression of Slit2 and SDF1 were dynamically regulated in MSC and OBC-like populations following radiation, while Robo4 expression was restricted to EC. Radiation also significantly affected the cellularity and frequency of both the non-adherent and adherent cells within the BM stroma. These data support a physiological role for Slit2 in regulating the dynamic function of Robo-expressing cells within BM niches at steady state and following radiation.


Available from: Koen Schepers, Aug 19, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic fate-mapping approaches provide a unique opportunity to assess differentiation pathways under physiological conditions. We have recently employed a lineage tracing approach to define hematopoietic differentiation pathways in relation to expression of the tyrosine kinase receptor Flk2. ( 1) Based on our examination of reporter activity across all stem, progenitor and mature populations in our Flk2-Cre lineage model, we concluded that all mature blood lineages are derived through a Flk2 (+) intermediate, both at steady-state and under stress conditions. Here, we re-examine in depth our initial conclusions and perform additional experiments to test alternative options of lineage specification. Our data unequivocally support the conclusion that onset of Flk2 expression results in loss of self-renewal but preservation of multilineage differentiation potential. We discuss the implications of these data for defining stem cell identity and lineage potential among hematopoietic populations.
    Cell cycle (Georgetown, Tex.) 09/2012; 11(17):3180-8. DOI:10.4161/cc.21279 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Haematopoietic stem cell (HSC) niches provide an environment essential for life-long HSC function. Intense investigation of HSC niches both feed off and drive technology development to increase our capability to assay functionally defined cells with high resolution. A major driving force behind the desire to understand the basic biology of HSC niches is the clear implications for clinical therapies. Here, with particular emphasis on cell type-specific deletion of SCL and CXCL12, we focus on unresolved issues on HSC niches, framed around some very recent advances and novel discoveries on the extrinsic regulation of HSC maintenance. We also provide ideas for possible paths forward, some of which are clearly within reach while others will require both novel tools and vision.
    The EMBO Journal 09/2013; 32(19). DOI:10.1038/emboj.2013.201 · 10.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the approval of the first antiangiogenic agent bevacizumab, a neutralizing antibody against the vascular endothelial growth factor (VEGF), antiangiogenic therapies augmented the standard armamentarium of anticancer therapies and proved their clinical efficacy. Nevertheless, antiangiogenic strategies could not fulfill the expected hopes. In clinical routine, therapy responses to antiangiogenic therapies were mostly transient and most of the patients developed evasive resistance mechanisms during therapy. Further, no predictive biomarker for therapy response could be developed, hampering the clinical development of these agents and triggering skepticism. In the past years, knowledge on the biology of angiogenesis increased and the role of tumor hypoxia was better characterized and identified as the driver for angiogenic regulation mechanisms. Besides VEGF, new angiogenic and antiangiogenic factors were characterized and the process of endothelial cell migration, proliferation and vessel formation was better elucidated. Thus, a strong connection to neural development and axon guidance molecules like netrins, Slit proteins, semaphorins, ephrins and their cognate receptors UNC5, Robo1-4, neuropilin and EphB was identified. The aim of this review is to present the importance of these axon guidance molecules with special focus on Robo4 and semaphorins in tumor angiogenesis and to highlight their value as potential targets for new antiangiogenic therapies. © 2014 S. Karger AG, Basel.
    Oncology 01/2014; 86(1):46-52. DOI:10.1159/000356871 · 2.42 Impact Factor
Show more