Article

Comparative efficacy of rHaa86 and rBm86 against Hyalomma anatolicum anatolicum and Rhipicephalus (Boophilus) microplus.

Entomology Laboratory, Parasitology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
Parasite Immunology (Impact Factor: 2.21). 02/2012; 34(6):297-301. DOI: 10.1111/j.1365-3024.2012.01356.x
Source: PubMed

ABSTRACT Hyalomma anatolicum anatolicum and Rhipicephalus (Boophilus) microplus are the most economically important tick species in India and other tropical and subtropical regions of the world and transmit pathogens causing animal and human diseases. We demonstrated that vaccination of animal by rHaa86 could be used for the control of both H. a. anatolicum and R. (B.) microplus infestations. By comparing the efficacy of rHaa86 and rBm86, it was observed that vaccine based on rHaa86 will be more effective in controlling homologous challenge infestations (68·7% against larvae and 45·8% against adults). The results of this trial demonstrated that species-specific antigens are the better choice for vaccine development and could serve as an effective tool for the integrated control of H. a. anatolicum.

0 Bookmarks
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rhipicephalus microplus recombinant Bm86-based tick vaccines have shown their efficacy for the control of several Hyalomma cattle ticks genera, namely H. dromedarii and H. anatolicum. However, H. scupense species, the most important tick in North Africa has never been studied. Vaccination trials using either a recombinant Bm86-based vaccine or a recombinant Hd86-based vaccine (the Bm86 ortholog in H. scupense) were conducted in cattle against immature and adult H. scupense ticks and adult H. excavatum ticks. The results showed a 59.19% reduction in the number of scupense nymphs engorging on Hd86 vaccinated cattle. However, cattle vaccination with Bm86 or Hd86 did not have an effect on H. scupense or H. excavatum adult ticks infestations. These results showed that Hd86 vaccines are selectively effective against H. scupense immature instars and emphasize on an integrated anti-tick vaccine control in North Africa.
    Vaccine 10/2012; · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identification of cross-protective tick vaccine antigens is a challenging area of veterinary research. To address this challenge, a recently identified candidate tick protective antigen, Subolesin (SUB), was targeted in this research. The conservation of subolesin ortholog of Hyalomma anatolicum and Rhipicephalus (Boophilus) microplus across different Indian strains was 98.1-99.4% (within species), while at the amino acid level SUB sequence homology was ≥53.2% (between tick species). Recombinant R. (B.) microplus SUB (rBmSu) was produced in Escherichia coli and characterized. Cross-bred cattle male calves (N=10) were immunized with three doses of 100μg each of the rBmSu emulsified in 10% Montanide 888 at monthly intervals on days 0, 30 and 60. The control group was injected with PBS in 10% Montanide 888. For the first tick challenge, calves were infested with larvae of R. (B.) microplus generated from 100mg eggs 2 weeks after last immunization (day 75). The immunization resulted in 16.3%, 8.0%, 9.4%, and 26.1% reduction in female tick numbers (DT), weight (DW), oviposition (DO) and egg fertility (DF), respectively, when compared to controls. In the subsequent challenge on day 105, DT, DW, DO and DF were reduced by 9.0%, 4.1%, 8.6%, and 24.2%, respectively, when compared to controls. The vaccine efficacy (E) was equal to 44.0% and 37.2% after the first and second challenges, respectively. The results showed a positive correlation between antibody titers for both total IgG and IgG1 and E in the second but not in the first tick challenge. These results suggested the possibility of developing a SUB-based vaccine for control of cattle tick infestations under Indian conditions.
    Vaccine 04/2014; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cattle ticks are responsible for great economic losses in cattle farming worldwide, and their main control method, chemicals, has been showing problems, whether resulting from the development of resistant strains of ticks or environmental contamination. Research studies directed toward developing vaccines against ticks are emerging. One way to evaluate those vaccines is to calculate the percentage of efficacy. The aim of this study was to analyze scientific publications archived in PubMed that used this method of assessment and discuss the main factors that may affect its calculation. Thus, 25 articles addressing this subject were selected. The percentage of efficacy was usually calculated in one of two ways, with one considering the reduced fertility of eggs and the other not. The latter method may underestimate the vaccine efficacy, and the most complete formula for calculating the efficacy reflects how much the vaccine actually affects the infestation. In our view, the use of the complete formula for calculating the percentage of efficacy is broader and more representative of the vaccine effect on the tick population.
    Revista brasileira de parasitologia veterinaria = Brazilian journal of veterinary parasitology: Orgao Oficial do Colegio Brasileiro de Parasitologia Veterinaria 12/2013; 22(4):571-8. · 0.72 Impact Factor

Full-text

View
0 Downloads