Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding

Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Kerala 673601, India.
Journal of amino acids 07/2011; 2011:843206. DOI: 10.4061/2011/843206
Source: PubMed

ABSTRACT Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner. The catalytic cooperativity of ATP binding/hydrolysis in CCT occurs in a sequential manner different from concerted cooperativity as shown for GroEL. Unlike GroEL, CCT does not have GroES-like cofactor, rather it has a built-in lid structure responsible for closing the central cavity. The CCT complex recognizes its substrates through diverse mechanisms involving hydrophobic or electrostatic interactions. Upstream factors like Hsp70 and Hsp90 also work in a concerted manner to transfer the substrate to CCT. Moreover, prefoldin, phosducin-like proteins, and Bag3 protein interact with CCT and modulate its function for the fine-tuning of protein folding process. Any misregulation of protein folding process leads to the formation of misfolded proteins or toxic aggregates which are linked to multiple pathological disorders.

Download full-text


Available from: Zulfiqar Ahmad, Sep 27, 2015
30 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Archaeal and eukaryotic cytosols contain group II chaperonins, which have a double-barrel structure and fold proteins inside a cavity in an ATP-dependent manner. The most complex of the chaperonins, the eukaryotic TCP-1 ring complex (TRiC), has eight different subunits, chaperone containing TCP-1 (CCT1-8), that are arranged so that there is one of each subunit per ring. Aspects of the structure and function of the bovine and yeast TRiC have been characterized, but studies of human TRiC have been limited. We have isolated and purified endogenous human TRiC from HeLa suspension cells. This purified human TRiC contained all eight CCT subunits organized into double-barrel rings, consistent with what has been found for bovine and yeast TRiC. The purified human TRiC is active as demonstrated by the luciferase refolding assay. As a more stringent test, the ability of human TRiC to suppress the aggregation of human γD-crystallin was examined. In addition to suppressing off-pathway aggregation, TRiC was able to assist the refolding of the crystallin molecules, an activity not found with the lens chaperone, α-crystallin. Additionally, we show that human TRiC from HeLa cell lysate is associated with the heat shock protein 70 and heat shock protein 90 chaperones. Purification of human endogenous TRiC from HeLa cells will enable further characterization of this key chaperonin, required for the reproduction of all human cells.
    Cell Stress and Chaperones 08/2012; 18(2). DOI:10.1007/s12192-012-0357-z · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here we investigated expression, cellular localization and function of neuronal CCTγ during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified using two-dimensional electrophoresis and mass spectrometry, including 20 up-regulated proteins and 4 down-regulated proteins. In mouse N2a cells infected with RABV or co-transfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that up-regulated cellular CCTγ was co-localized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri Bodies (NBs), did not form in mouse N2a cells only expressing viral proteins N or P. Knockdown of CCTγ by lentivirus-mediated RNA interference led to a significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCTγ to NBs and identify the chaperonin CCTγ as a host factor facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit.
    Journal of Virology 05/2013; 87(13). DOI:10.1128/JVI.03186-12 · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inherited retinal degenerations, caused by mutations in over 100 individual genes, affect approximately 2 million people worldwide. Many of the underlying mutations cause protein misfolding or mistargeting in affected photoreceptors. This places an increased burden on the protein folding and degradation machinery, which may trigger cell death. We analyzed how these cellular functions are affected in degenerating rods of the transducin γ-subunit (Gγ1) knockout mouse. These rods produce large amounts of transducin β-subunit (Gβ1), which cannot fold without Gγ1 and undergoes intracellular proteolysis instead of forming a transducin βγ-subunit complex. Our data revealed that the most critical pathobiological factor leading to photoreceptor cell death in these animals is insufficient capacity of proteasomes to process abnormally large amounts of misfolded protein. A decrease in the Gβ1 production in Gγ1 knockout rods resulted in a significant reduction in proteasomal overload and caused a striking reversal of photoreceptor degeneration. We further demonstrated that a similar proteasomal overload takes place in photoreceptors of other mutant mice where retinal degeneration has been ascribed to protein mistargeting or misfolding, but not in mice whose photoreceptor degenerate as a result of abnormal phototransduction. These results establish the prominence of proteasomal insufficiency across multiple degenerative diseases of the retina, thereby positioning proteasomes as a promising therapeutic target for treating these debilitating conditions.
    Proceedings of the National Academy of Sciences 05/2013; 110(24). DOI:10.1073/pnas.1305521110 · 9.67 Impact Factor
Show more