Article

Polo-like kinase 1 (Plk1): an Unexpected Player in DNA Replication

Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA. .
Cell Division (Impact Factor: 2.63). 02/2012; 7:3. DOI: 10.1186/1747-1028-7-3
Source: PubMed

ABSTRACT Regulation of cell cycle progression is important for the maintenance of genome integrity, and Polo-like kinases (Plks) have been identified as key regulators of this process. It is well established that Polo-like kinase 1 (Plk1) plays critical roles in mitosis but little is known about its functions at other stages of the cell cycle. Here we summarize the functions of Plk1 during DNA replication, focusing on the molecular events related to Origin Recognition Complex (ORC), the complex that is essential for the initiation of DNA replication. Within the context of Plk1 phosphorylation of Orc2, we also emphasize regulation of Orc2 in different organisms. This review is intended to provide some insight into how Plk1 coordinates DNA replication in S phase with chromosome segregation in mitosis, and orchestrates the cell cycle as a whole.

0 Bookmarks
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
    Nature Reviews Molecular Cell Biology 06/2014; 15(7):433-52. DOI:10.1038/nrm3819 · 36.46 Impact Factor
  • Source
    Glaucoma - Basic and Clinical Aspects, Edited by Shimon Rumelt, 04/2013: chapter 6: pages 103-127; InTech Open., ISBN: 980-953-307-706-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Butylated hydroxyanisole and propylparaben are phenolic preservatives commonly used in food, pharmaceutical and personal care products. Both chemicals have been subjected to extensive toxicological studies, due to the growing concern regarding their possible impacts on environmental and human health. However, the cytotoxicity and underlying mechanisms of co-exposure to these compounds have not been explored. In this study, a set of relevant cytotoxicity endpoints including cell viability and proliferation, oxidative stress, DNA damage and gene expression changes were analyzed to assess whether the antioxidant butylated hydroxyanisole could prevent the pro-oxidant effects caused by propylparaben in Vero cells. We demonstrated that binary mixtures of both chemicals induce greater cytotoxic effects than those reported after single exposureto each compound. Simultaneous treatment with butylated hydroxyanisole and propylparaben caused G0/G1 cell cycle arrest as a result of enhanced generation of oxidative stress and DNA double strand breaks. DNA microarray analysis revealed that a cross-talk between transforming growth factor beta (TGFβ) and ataxia-telangiectasia mutated kinase (ATM) pathways regulates the response of Vero cells to the tested compounds in binary mixture. Our findings indicate that butylated hydroxyanisole potentiates the pro-oxidant effects of propylparaben in cultured mammalian cells and provide useful information for their safety assessment.
    Food and Chemical Toxicology 07/2014; 72. DOI:10.1016/j.fct.2014.07.031 · 2.61 Impact Factor

Preview (2 Sources)

Download
1 Download
Available from