Article

Early and Selective Impairments in Axonal Transport Kinetics of Synaptic Cargoes Induced by Soluble Amyloid β-Protein Oligomers

Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Traffic (Impact Factor: 4.71). 02/2012; 13(5):681-93. DOI: 10.1111/j.1600-0854.2012.01340.x
Source: PubMed

ABSTRACT The downstream targets of amyloid β (Aβ)-oligomers remain elusive. One hypothesis is that Aβ-oligomers interrupt axonal transport. Although previous studies have demonstrated Aβ-induced transport blockade, early effects of low-n soluble Aβ-oligomers on axonal transport remain unclear. Furthermore, the cargo selectivity for such deficits (if any) or the specific effects of Aβ on the motility kinetics of transported cargoes are also unknown. Toward this, we visualized axonal transport of vesicles in cultured hippocampal neurons treated with picomolar (pm) levels of cell-derived soluble Aβ-oligomers. We examined select cargoes thought to move as distinct organelles and established imaging parameters that allow organelle tracking with consistency and high fidelity - analyzing all data in a blinded fashion. Aβ-oligomers induced early and selective diminutions in velocities of synaptic cargoes but had no effect on mitochondrial motility, contrary to previous reports. These changes were N-methyl D-aspartate receptor/glycogen synthase kinase-3β dependent and reversible upon washout of the oligomers. Cluster-mode analyses reveal selective attenuations in faster-moving synaptic vesicles, suggesting possible decreases in cargo/motor associations, and biochemical experiments implicate tau phosphorylation in the process. Collectively, the data provide a biological basis for Aβ-induced axonal transport deficits.

Download full-text

Full-text

Available from: Subhojit Roy, Jul 28, 2015
0 Followers
 · 
216 Views
  • Source
    • "Imaging parameters were set at 1 frame/s, total 200 frames and 200–400 ms exposure with 2 3 2 camera binning, totaling to 2,000 s of total imaging time for each group, suitable to capture the infrequent transport events in dendrites. For transport analysis, kymographs were generated in MetaMorph, and segmental tracks were traced on the kymographs using a line tool and individual lines were saved as ''.rgn'' files, and the resultant velocity data (distance/time) were obtained for each track as described in Tang et al. (2012). Frequencies of particle movements were calculated by dividing the number of individual particles moving in a given direction by the total number of analyzed particles in the kymograph. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The convergence of APP (substrate) and BACE-1 (enzyme) is a rate-limiting, obligatory event triggering the amyloidogenic pathway-a key step in Alzheimer's disease (AD) pathology. However, as both APP/BACE-1 are highly expressed in brain, mechanisms precluding their unabated convergence are unclear. Exploring dynamic localization of APP/BACE-1 in cultured hippocampal neurons, we found that after synthesis via the secretory pathway, dendritic APP/BACE-1-containing vesicles are largely segregated in physiologic states. While BACE-1 is sorted into acidic recycling endosomes, APP is conveyed in Golgi-derived vesicles. However, upon activity induction-a known trigger of the amyloidogenic pathway-APP is routed into BACE-1-positive recycling endosomes via a clathrin-dependent mechanism. A partitioning/convergence of APP/BACE-1 vesicles is also apparent in control/AD brains, respectively. Considering BACE-1 is optimally active in an acidic environment, our experiments suggest that neurons have evolved trafficking strategies that normally limit APP/BACE-1 proximity and also uncover a pathway routing APP into BACE-1-containing organelles, triggering amyloidogenesis.
    Neuron 08/2013; 79(3):447-60. DOI:10.1016/j.neuron.2013.05.035 · 15.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD.
    Experimental Neurology 06/2012; 246. DOI:10.1016/j.expneurol.2012.06.003 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer’s patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months) and aged (18 months) PS1(M146L)/APP(751sl) transgenic mice. Results Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. Conclusion A progressive age-dependent cytoskeletal pathology along with a reduction of lysosomal and, in minor extent, proteasomal activity could be directly implicated in the progressive accumulation of APP derived fragments (and Abeta peptides) in parallel with the increase of BACE-1 and gamma-secretase activities. This retard in the APP metabolism seemed to be directly implicated in the synaptic Abeta accumulation and, in consequence, in the pathology progression between synaptically connected regions.
    Molecular Neurodegeneration 11/2012; 7(1):59. DOI:10.1186/1750-1326-7-59 · 5.29 Impact Factor
Show more