Article

Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells.

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2012; 109(7):2527-32. DOI: 10.1073/pnas.1121003109
Source: PubMed

ABSTRACT We recently showed that defined sets of transcription factors are sufficient to convert mouse and human fibroblasts directly into cells resembling functional neurons, referred to as "induced neuronal" (iN) cells. For some applications however, it would be desirable to convert fibroblasts into proliferative neural precursor cells (NPCs) instead of neurons. We hypothesized that NPC-like cells may be induced using the same principal approach used for generating iN cells. Toward this goal, we infected mouse embryonic fibroblasts derived from Sox2-EGFP mice with a set of 11 transcription factors highly expressed in NPCs. Twenty-four days after transgene induction, Sox2-EGFP(+) colonies emerged that expressed NPC-specific genes and differentiated into neuronal and astrocytic cells. Using stepwise elimination, we found that Sox2 and FoxG1 are capable of generating clonal self-renewing, bipotent induced NPCs that gave rise to astrocytes and functional neurons. When we added the Pou and Homeobox domain-containing transcription factor Brn2 to Sox2 and FoxG1, we were able to induce tripotent NPCs that could be differentiated not only into neurons and astrocytes but also into oligodendrocytes. The transcription factors FoxG1 and Brn2 alone also were capable of inducing NPC-like cells; however, these cells generated less mature neurons, although they did produce astrocytes and even oligodendrocytes capable of integration into dysmyelinated Shiverer brain. Our data demonstrate that direct lineage reprogramming using target cell-type-specific transcription factors can be used to induce NPC-like cells that potentially could be used for autologous cell transplantation-based therapies in the brain or spinal cord.

Full-text

Available from: Henrik Ahlenius, May 30, 2015
0 Followers
 · 
161 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Direct reprogramming technology has emerged as an outstanding technique for the generation of induced pluripotent stem (iPS) cells and various specialized cells directly from somatic cells of different species. Recent studies dissecting the molecular mechanisms of reprogramming have methodologically improved the quality, ease and efficiency of reprogramming and eliminated the need for genome modifications with integrating viral vectors. With these advancements, direct reprogramming technology has moved closer to clinical application. Here, we provide a comprehensive overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency, strategies to enhance reprogramming efficiency, and chemical reprogramming as one of the non-integrating approaches in iPS cell generation. In addition to direct transdifferentiation, pluripotency factor-induced transdifferentiation or cell activation and signaling directed (CASD) lineage conversion is described as a robust strategy for the generation of both tissue-specific progenitors and clinically relevant cell types. Then, we consider the possibility that a combined method of inhibition of roadblocks (e.g. p53, p21, p57, Mbd3, etc.), and application of enhancing factors in a chemical reprogramming paradigm would be a safe, reliable and effective approach in pluripotent reprogramming and transdifferentiation. Furthermore, with respect to the state of native, aberrant, and target gene regulatory networks in reprogrammed cell populations, CellNet is reviewed as a computational platform capable of evaluating the fidelity of reprogramming methods and refining current engineering strategies. Ultimately, we conclude that a faithful, highly efficient and integration-free reprogramming paradigm would provide powerful tools for research studies, drug-based induced regeneration, cell transplantation therapies and other regenerative medicine purposes.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the generation of induced pluripotent stem cells in 2006, cellular reprogramming has attracted increasing attention as a revolutionary strategy for cell replacement therapy. Recent advances have revealed that somatic cells can be directly converted into other mature cell types, which eliminates the risk of neoplasia and the generation of undesired cell types. Astrocytes become reactive and undergo proliferation, which hampers axon regeneration following injury, stroke, and neurodegenerative diseases. An emerging technique to directly reprogram astrocytes into induced neural stem cells (iNSCs) and induced neurons (iNs) by neural fate determinants brings potential hope to cell replacement therapy for the above neurological problems. Here, we discuss the development of direct reprogramming of various cell types into iNs and iNSCs, then detail astrocyte-derived iNSCs and iNs in vivo and in vitro. Finally, we highlight the unsolved challenges and opportunities for improvement.
    Neuroscience Bulletin 04/2015; DOI:10.1007/s12264-014-1517-1 · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepcidin, encoding by HAMP gene, is the pivotal regulator of iron metabolism, controlling the systemic absorption and transportation of irons from intracellular stores. Abnormal levels of HAMP expression alter plasma iron parameters and lead to iron metabolism disorders. Therefore, it is an important goal to understand the mechanisms controlling HAMP gene expression. Overexpression of Sox2 decrease basal expression of HAMP or induced by IL-6 or BMP-2, whereas, knockdown of Sox2 can increase HAMP expression, furthermore, two potential Sox2-binding sites were identified within the human HAMP promoter. Indeed, luciferase experiments demonstrated that deletion of any Sox2-binding site impaired the negative regulation of Sox2 on HAMP promoter transcriptional activity in basal conditions. ChIP experiments showed that Sox2 could directly bind to these sites. Finally, we verified the role of Sox2 to negatively regulate HAMP expression in human primary hepatocytes. We found that Sox2 as a novel factor to bind with HAMP promoter to negatively regulate HAMP expression, which may be further implicated as a therapeutic option for the amelioration of HAMP-overexpression-related diseases, including iron deficiency anemia.
    Biological research 05/2015; 48(1):23. DOI:10.1186/s40659-015-0013-z · 1.04 Impact Factor