Article

Differential modulation of the default mode network via serotonin-1A receptors.

Department of Psychiatry and Psychotherapy, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2012; 109(7):2619-24. DOI: 10.1073/pnas.1117104109
Source: PubMed

ABSTRACT Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT(1A)), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT(1A) binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT(1A) binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT(1A) inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT(1A) binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT(1A) binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.

Full-text

Available from: Cécile Philippe, Jun 02, 2015
0 Followers
 · 
513 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of neurotransmitters in the activity of resting state networks has been gaining attention and has become a field of research with magnetic resonance spectroscopy (MRS) being one of the key techniques. MRS permits the measurement of c-aminobutyric acid (GABA) and glutamate levels, the central biochemical constituents of the excitation-inhibition balance in vivo. The inhibitory effects of GABA in the brain have been largely investigated in relation to the activity of resting state networks in functional magnetic resonance imaging (fMRI). In this study GABA concentration in the posterior cingulate cortex (PCC) was measured using single voxel spectra acquired with standard point resolved spectroscopy (PRESS) from 20 healthy male volunteers at 3 T. Resting state fMRI was consecutively measured and the values of GABA/Creatine+ Phosphocreatine ratio (GABA ratio) were included in a general linear model matrix as a step of dual regression analysis in order to identify voxels whose neuroimaging metrics during rest were related to individual levels of the GABA ratio. Our data show that the connection strength of putamen to the default-mode network during resting state has a negative linear relationship with the GABA ratio measured in the PCC. These findings highlight the role of PCC and GABA in segregation of the motor input, which is an inherent condition that characterises resting state.
    PLoS ONE 09/2014; 9(9):e106609. DOI:10.1371/journal.pone.0106609 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since its introduction, resting-state functional magnetic resonance imaging (rsfMRI) has been a powerful tool for investigating functional neural networks in both normal and pathological conditions. When measuring resting-state functional connectivity (RSFC), most rsfMRI approaches do not consider its temporal variations and thus only provide the averaged RSFC over the scan time. Recently, there has been a surge of interest to investigate the dynamic characteristics of RSFC in humans, and promising results have been yielded. However, our knowledge regarding the dynamic RSFC in animals remains sparse. In the present study we utilized the single-volume co-activation method to systematically study the dynamic properties of RSFC within the networks of infralimbic cortex (IL) and primary somatosensory cortex (S1) in both awake and anesthetized rats. Our data showed that both IL and S1 networks could be decomposed into several spatially reproducible but temporally changing co-activation patterns (CAPs), suggesting that dynamic RSFC was indeed a characteristic feature in rodents. In addition, we demonstrated that anesthesia profoundly impacted the dynamic RSFC of neural circuits subserving cognitive and emotional functions but had less effects on sensorimotor systems. Finally, we examined the temporal characteristics of each CAP, and found that individual CAPs exhibited consistent temporal evolution patterns. Together, these results suggest that dynamic RSFC might be a general phenomenon in vertebrate animals. In addition, this study has paved the way for further understanding the alterations of dynamic RSFC in animal models of brain disorders.
    NeuroImage 10/2014; 104. DOI:10.1016/j.neuroimage.2014.10.013 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Olfactory performance in Parkinson's disease (PD) is closely associated with subsequent cognitive decline. In the present study, we analyzed the olfaction-dependent functional connectivity with a hypothesis that olfactory performance would influence functional connectivity within key brain areas of PD. A total of 110 nondemented drug-naïve patients with PD were subdivided into three groups of high score (PD-H, n = 23), middle score (PD-M, n = 64), and low score (PD-L, n = 23) based on olfactory performance. We performed the resting-state functional connectivity with seed region of interest in the posterior cingulate cortex (PCC) and caudate. An analysis of functional connectivity revealed that PD-L patients exhibited a significant attenuation of cortical functional connectivity with the PCC in the bilateral primary sensory areas, right frontal areas, and right parietal areas compared to PD-H or PD-M patients. Meanwhile, PD-L patients exhibited a significant enhancement of striatocortical functional connectivity in the bilateral occipital areas and right frontal areas compared to PD-H or PD-M patients. In the voxel-wise correlation analysis, olfactory performance was positively associated with cortical functional connectivity with the PCC in similar areas of attenuated cortical connectivity in PD-L patients relative to PD-H patients. On the other hand, the cortical functional connectivity with the caudate was negatively correlated with olfactory performance in similar areas of increased connectivity in PD-L patients relative to PD-H patients. The present study demonstrated that resting state functional connectivity exhibits a distinctive pattern depending on olfactory performance, which might shed light on a meaningful relationship between olfactory impairment and cognitive dysfunction in PD. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 12/2014; 36(5). DOI:10.1002/hbm.22732 · 6.92 Impact Factor