Article

A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks.

Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.74). 02/2012; 109(8):2825-30. DOI: 10.1073/pnas.1106612109
Source: PubMed

ABSTRACT The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain network topology provides valuable information on healthy and pathological brain functioning. Novel approaches for brain network analysis have shown an association between topological properties and cognitive functioning. Under the assumption that "stronger is better", the exploration of brain properties has generally focused on the connectivity patterns of the most strongly correlated regions, whereas the role of weaker brain connections has remained obscure for years. Here, we assessed whether the different strength of connections between brain regions may explain individual differences in intelligence. We analyzed-functional connectivity at rest in ninety-eight healthy individuals of different age, and correlated several connectivity measures with full scale, verbal, and performance Intelligent Quotients (IQs). Our results showed that the variance in IQ levels was mostly explained by the distributed communication efficiency of brain networks built using moderately weak, long-distance connections, with only a smaller contribution of stronger connections. The variability in individual IQs was associated with the global efficiency of a pool of regions in the prefrontal lobes, hippocampus, temporal pole, and postcentral gyrus. These findings challenge the traditional view of a prominent role of strong functional brain connections in brain topology, and highlight the importance of both strong and weak connections in determining the functional architecture responsible for human intelligence variability. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 03/2014; · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The integrity of structural connectivity in a functional brain network supports the efficiency of neural processing within relevant brain regions. This study aimed to quantitatively investigate the short- and long-range fibers, and their differential roles in the lower cognitive efficiency in aging and dementia. Three groups of healthy young, healthy older adults and patients with Alzheimer's disease (AD) participated in this combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study on prospective memory (PM). Short- and long-range fiber tracts within the PM task engaged brain networks were generated. The correlation between the fMRI signal change, PM performance and the DTI characters were calculated. FMRI results showed that the PM-specific frontal activations in three groups were distributed hierarchically along the rostrocaudal axis in the frontal lobe. In an overall PM condition generally activated brain network among the three groups, tractography was used to generate the short-range fibers, and they were found impaired in both healthy older adults and AD patients. However, the long-range fiber tracts were only impaired in AD. Additionally, the mean diffusivity (MD) of short-range but not long-range fibers was positively correlated with fMRI signal change and negatively correlated with the efficiency of PM performance. This study suggests that the disintegrity of short-range fibers may contribute more to the lower cognitive efficiency and higher compensatory brain activation in healthy older adults and more in AD patients.
    PLoS ONE 01/2014; 9(4):e90307. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.
    Scientific Reports 01/2014; 4:4312. · 5.08 Impact Factor

Full-text (2 Sources)

View
36 Downloads
Available from
May 17, 2014