Factor VII-activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a.

Department of Medicine, Institute for Biochemistry, Justus Liebig University, D-35392 Giessen, Germany.
The Journal of Immunology (Impact Factor: 5.36). 03/2012; 188(6):2858-65. DOI: 10.4049/jimmunol.1103029
Source: PubMed

ABSTRACT Severe tissue injury results in early activation of serine protease systems including the coagulation and complement cascade. In this context, little is known about factor VII-activating protease (FSAP), which is activated by substances released from damaged cells such as histones and nucleosomes. Therefore, we have measured FSAP activation in trauma patients and have identified novel FSAP substrates in human plasma. Mass spectrometry-based methods were used to identify FSAP binding proteins in plasma. Anaphylatoxin generation was measured by ELISA, Western blotting, protein sequencing, and chemotaxis assays. Plasma samples from trauma patients were analyzed for FSAP Ag and activity, nucleosomes, C5a, and C3a. Among others, we found complement components C3 and C5 in FSAP coimmunoprecipitates. C3 and C5 were cleaved by FSAP in a dose- and time-dependent manner generating functional C3a and C5a anaphylatoxins. Activation of endogenous FSAP in plasma led to increased C5a generation, but this was not the case in plasma of a homozygous carrier of Marburg I single nucleotide polymorphism with lower FSAP activity. In multiple trauma patients there was a large increase in circulating FSAP activity and nucleosomes immediately after the injury. A high correlation between FSAP activity and C5a was found. These data suggest that activation of FSAP by tissue injury triggers anaphylatoxin generation and thereby modulates the posttraumatic inflammatory response in vivo. A strong link between C5a, nucleosomes, and FSAP activity indicates that this new principle might be important in the regulation of inflammation.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Factor VII activating protease (FSAP) is a circulating protease with a putative role in hemostasis, remodeling and inflammation. A polymorphism giving rise to low proteolytic activity has been associated with an increased risk of stroke and carotid stenosis. To date, no in vivo studies or mechanistic information is available to explain these results. Based on the polymorphism data we hypothesize that a lack of endogenous FSAP will increase the severity of stroke. Stroke was induced by applying thrombin in the middle cerebral artery in wild-type (WT) and FSAP−/− mice. Increased stroke volume and worsened neurological deficit were observed in FSAP−/− mice. Raised levels of FSAP protein were detected in the infarcted area of WT mice together with enhanced leukocyte infiltration and apoptosis in FSAP−/− mice. There was a concomitant increase in the activation of the NFκB pathway and decrease in expression of the PI3K/AKT pathway proteins. At a cellular level, FSAP increased cell survival and decreased apoptosis in primary cortical neurons and astrocytes exposed to tPA/NMDA excitotoxicity or oxygen glucose deprivation (OGD)/reoxygenation, respectively. This was mediated via the PI3K/AKT pathway with involvement of the protease activated receptor-1. To corroborate the human epidemiological data, which link FSAP with stroke, we now show that the lack of FSAP in mice worsens the outcome of stroke. In the absence of FSAP there was a stronger inflammatory response and lower cell survival due to insufficient activation of the PI3K/AKT pathway.
    European Journal of Neuroscience 01/2015; DOI:10.1111/ejn.12830 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.-Kalbitz, M., Grailer, J. J., Fattahi, F., Jajou, L., Herron, T. J., Campbell, K. F., Zetoune, F. S., Bosmann, M., Sarma, J. V., Huber-Lang, M., Gebhard, F., Loaiza, R., Valdivia, H. H., Jalife, J., Russell, M. W., and Ward, P. A. Role of extracellular histones in the cardiomyopathy of sepsis. © FASEB.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the blurring boundaries between clinical practice and scientific observations, it is increasingly attractive to propose shared disease mechanisms that could explain clinical experience. With the advent of available therapeutic options for complement inhibition, there is a push for more widespread application in patients, despite a lack of clinically relevant research. Patients with disseminated intravascular coagulation (DIC) and thrombotic microangiopathies (TMA) frequently exhibit complement activation and share the clinical consequences of thrombocytopenia, microangiopathic hemolytic anemia, and microvascular thrombosis. However, they arise from very different molecular etiologies giving rise to cautious questions about inclusive treatment approaches because most clinical observations are associative and not cause-and-effect. Complement inhibition is successful in many cases of atypical hemolytic uremic syndrome, greatly reducing morbidity and mortality of patients by minimizing thrombocytopenia, microangiopathic hemolytic anemia, and microvascular thrombosis. But is this success due to targeting disease etiology or because complement is a sufficiently systemic target or both? These questions are important because complement activation and similar clinical features also are observed in many DIC patients, and there are mounting calls for systemic inhibition of complement mediators despite the enormous differences in the primary diseases complicated by DIC. We are in great need of thoughtful and standardized assessment with respect to both beneficial and potentially harmful consequences of complement activation in these patient populations. In this review, we discuss about what needs to be done in terms of establishing the strategy for complement inhibition in TMA and DIC, based on the current knowledge.

Full-text (2 Sources)

1 Download
Available from
Feb 10, 2015