Article

Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days.

Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, 78026 Versailles cedex, France.
The Plant Cell (Impact Factor: 9.25). 02/2012; 24(2):463-81. DOI: 10.1105/tpc.111.091306
Source: PubMed

ABSTRACT The conserved Target of Rapamycin (TOR) kinase forms high molecular mass complexes and is a major regulator of cellular adaptations to environmental cues. The Lethal with Sec Thirteen 8/G protein β subunit-like (LST8/GβL) protein is a member of the TOR complexes, and two putative LST8 genes are present in Arabidopsis thaliana, of which only one (LST8-1) is significantly expressed. The Arabidopsis LST8-1 protein is able to complement yeast lst8 mutations and interacts with the TOR kinase. Mutations in the LST8-1 gene resulted in reduced vegetative growth and apical dominance with abnormal development of flowers. Mutant plants were also highly sensitive to long days and accumulated, like TOR RNA interference lines, higher amounts of starch and amino acids, including proline and glutamine, while showing reduced concentrations of inositol and raffinose. Accordingly, transcriptomic and enzymatic analyses revealed a higher expression of genes involved in nitrate assimilation when lst8-1 mutants were shifted to long days. The transcriptome of lst8-1 mutants in long days was found to share similarities with that of a myo-inositol 1 phosphate synthase mutant that is also sensitive to the extension of the light period. It thus appears that the LST8-1 protein has an important role in regulating amino acid accumulation and the synthesis of myo-inositol and raffinose during plant adaptation to long days.

0 Bookmarks
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory systems. The regulation of protein synthesis by sugars is fundamental to plant growth control, and recent advances in our understanding of the regulation of translation by sugars will be discussed.
    Journal of Experimental Botany 01/2014; · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the most fundamental aspects of growth in plants is its plasticity in relation to fluctuating environmental conditions. Growth of meristematic cells relies predominantly on protein synthesis, one of the most energy-consuming activities in cells, and thus is tightly regulated in accordance with the available nutrient and energy supplies. The Target of Rapamycin (TOR) signalling pathway takes a central position in this regulation. The core of the TOR signalling pathway is conserved throughout evolution, and can be traced back to the last eukaryotic common ancestor. In plants, a single complex constitutes the TOR signalling pathway. Manipulating the components of the TOR complex in Arabidopsis highlighted its common role as a major regulator of protein synthesis and metabolism, that is also involved in other biological functions such as cell-wall integrity, regulation of cell proliferation, and cell size. TOR, as an integral part of the auxin signalling pathway, connects hormonal and nutrient pathways. Downstream of TOR, S6 kinase and the ribosomal S6 protein have been shown to mediate several of these responses, although there is evidence of other complex non-linear TOR signalling pathway structures.
    Journal of Experimental Botany 02/2014; · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The WD-repeat (WDR) proteins comprise an astonishingly diverse superfamily of regulatory proteins. To date, genome-wide characterization of this family has only been conducted in Arabidopsis and little is known about WDR genes in cucumber (Cucumis sativus L.). This study identified 191 cucumber WDR genes in the latest cucumber genome and the CsWDR family contained a smaller number of identified genes compared to Arabidopsis. The results of this study were also supported by genome distribution and gene duplication analysis. Phylogenetic analysis showed that the WDR proteins could be classified into 21 subgroups. Moreover, an additional 12 AtWDR proteins were also identified and a complete overview of this gene family in Arabidopsis is presented, including the phylogeny, chromosome locations and duplication events. In addition, a comparative analysis between these genes in cucumber and Arabidopsis was performed and it suggested that there was strong gene conservation and that there was an expansion of particular functional genes during the evolution of the two species. The transcript abundance level analysis during abiotic stress (NaCl, ABA and low temperature treatments) identified six CsWDR genes that responded to one or more treatments. Tissue-specific expression profiles of these six genes were also analyzed. This study has produced a comparative genomics analysis of the WDR gene family in cucumber and Arabidopsis and provides the first steps towards the selection of CsWDR genes for cloning and functional dissection that can be used in further studies into their roles in cucumber stress resistance.
    MGG Molecular & General Genetics 11/2013; · 2.58 Impact Factor

Full-text (2 Sources)

View
5 Downloads
Available from
May 30, 2014