Article

Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing.

Unité de Défense Innée et Inflammation, Institut Pasteur, 75724 Paris, France.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2012; 109(5):1619-24. DOI: 10.1073/pnas.1108464109
Source: PubMed

ABSTRACT A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5(-/-) AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1(-/-) and AEP(-/-) mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation.

0 Followers
 · 
177 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory responses are a first line of host defense against a range of invading pathogens, consisting of the release of proinflammatory cytokines followed by attraction of polymorphonuclear neutrophils (PMNs) to the site of inflammation. Among the many virulence factors that contribute to the pathogenesis of infections, nucleoside diphosphate kinase (Ndk) mediates bacterially induced toxicity against eukaryotic cells. However, no study has examined how Ndk affects inflammatory responses. The present study examined the mechanisms by which Pseudomonas aeruginosa activates inflammatory responses upon infection of cells. The results showed that bacterial Ndk, with the aid of an additional bacterial factor, flagellin, induced expression of the proinflammatory cytokines interleukin-1alpha (IL-1alpha) and IL-1beta. Cytokine induction appeared to be dependent on the kinase activity of Ndk and was mediated via the NF-kappaB signaling pathway. Notably, Ndk activated the Akt signaling pathway, which acts upstream of NF-kappaB, as well as caspase-1, which is a key component of inflammasome. Thus, this study demonstrated that P. aeruginosa, through the combined effects of Ndk and flagellin, upregulates the expression of proinflammatory cytokines via the Akt/NF-kappaB signaling pathways.
    Infection and Immunity 07/2014; 82(8-8):3252-60. DOI:10.1128/IAI.02007-14 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. (2 0 1 5) 1 2 : 1
    Particle and Fibre Toxicology 01/2015; 12(1). DOI:10.1186/s12989-014-0078-9 · 6.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1-deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1-deficient mice. IL-1β cleavage and secretion were impaired in HO-1-deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes.
    Journal of Clinical Investigation 10/2014; 124(11). DOI:10.1172/JCI72853 · 13.77 Impact Factor

Full-text (2 Sources)

Download
18 Downloads
Available from
Jun 5, 2014