Article

Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing

Unité de Défense Innée et Inflammation, Institut Pasteur, 75724 Paris, France.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2012; 109(5):1619-24. DOI: 10.1073/pnas.1108464109
Source: PubMed

ABSTRACT A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5(-/-) AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1(-/-) and AEP(-/-) mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation.

Download full-text

Full-text

Available from: Michel Chignard, Mar 18, 2014
0 Followers
 · 
210 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor 5 (TLR5), a sensor for bacterial flagellin, mounts innate and adaptive immune responses, and has been implicated in infectious diseases, colitis and metabolic syndromes. Although TLR5 is believed to belong to cell surface TLRs, cell surface expression has never been verified. Moreover, it has remained unclear which types of immune cells express TLR5 and contribute to flagellin-dependent responses. In this study we established an anti-mouse TLR5 monoclonal antibody and studied the cell surface expression of TLR5 on immune cells. The macrophage cell line J774 expressed endogenous TLR5 on the cell surface and produced IL-6 and G-CSF in response to flagellin. Cell surface expression of TLR5 and flagellin-induced responses were completely abolished by silencing a TLR-specific chaperone protein associated with TLR4 A (PRAT4A), demonstrating that TLR5 is another client of PRAT4A. In the in vivo immune cells, cell surface TLR5 was mainly found on neutrophils and CD11b ( hi ) Ly6C ( hi ) classical monocytes in the bone marrow, circulation, spleen and inflammatory lesions. Ly6C ( hi ) classical monocytes, but not neutrophils, produced cytokines in response to flagellin. Splenic CD8 ( - ) CD4 ( + ) conventional dendritic cells and CD11c ( hi ) CD11b ( hi ) lamina propria DCs, also clearly expressed cell surface TLR5. Collectively, cell surface expression of TLR5 is dependent on PRAT4A and restricted to neutrophils, classical monocytes and specific DC subsets.
    International Immunology 07/2012; 24(10):613-23. DOI:10.1093/intimm/dxs068 · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TLRs function in innate immunity by detecting conserved structures present in bacteria, viruses, and fungi. Although TLRs do not necessarily distinguish pathogenic organisms from commensals, in the context of compromised innate immunity and combined with pathogens' effector molecules, TLRs drive the host response to the organism. This review will discuss the evidence and role(s) of TLRs in the response to the opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it relates to respiratory infection and CF, in which innate immune mechanisms are indeed compromised. Outer membrane lipoproteins, LPS, flagellin, and nucleic acids all serve as ligands for TLR2, -4, -5, and -9, respectively. These TLRs and their respective downstream effector molecules have proven critical to the host response to P. aeruginosa, although the protective effects of TLRs may be impaired and in some cases, enhanced in the CF patient, contributing to the particular susceptibility of individuals with this disease to P. aeruginosa infection.
    Journal of leukocyte biology 08/2012; 92(5). DOI:10.1189/jlb.0811410 · 4.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intracellular bacterial pathogen Coxiella burnetii is a Tier 2 select agent that causes human Q fever. In vivo, C. burnetii targets alveolar macrophages wherein the pathogen replicates in a lysosome-like parasitophorous vacuole (PV). In vitro, C. burnetii infects a variety of cultured cell lines that have collectively been used to model the pathogen's infectious cycle. However, differences in the cellular response to infection have been observed, and virulent C. burnetii isolate infection of host cells has not been well defined. Because alveolar macrophages are routinely implicated in disease, we established primary human alveolar macrophages (hAMs) as an in vitro model of C. burnetii-host cell interactions. C. burnetii pathotypes, including acute disease and endocarditis isolates, replicated in hAMs, albeit with unique PV properties. Each isolate replicated in large, typical PV and small, non-fused vacuoles, and lipid droplets were present in avirulent C. burnetii PV. Interestingly, a subset of small vacuoles harbored single organisms undergoing degradation. Prototypical PV formation and bacterial growth in hAMs required a functional type IV secretion system, indicating C. burnetii secretes effector proteins that control macrophage functions. Avirulent C. burnetii promoted sustained activation of Akt and Erk1/2 pro-survival kinases and short term phosphorylation of stress-related p38. Avirulent organisms also triggered a robust, early pro-inflammatory response characterized by increased secretion of TNF-α and IL-6, while virulent isolates elicited substantially reduced secretion of these cytokines. A corresponding increase in pro- and mature IL-1β occurred in hAMs infected with avirulent C. burnetii, while little accumulation was observed following infection with virulent isolates. Finally, treatment of hAMs with IFN-γ controlled intracellular replication, supporting a role for this antibacterial insult in the host response to C. burnetii. Collectively, the current results demonstrate the hAM model is a human disease-relevant platform for defining novel innate immune responses to C. burnetii.
    Cellular Microbiology 12/2012; 15(6). DOI:10.1111/cmi.12096 · 4.82 Impact Factor
Show more