Article

Challenges in drug delivery to tumors of the central nervous system: An overview of pharmacological and surgical considerations

Department of Neurological Surgery, University of California - San Francisco, San Francisco, CA 94158, United States.
Advanced drug delivery reviews (Impact Factor: 12.71). 01/2012; 64(7):590-7. DOI: 10.1016/j.addr.2012.01.004
Source: PubMed

ABSTRACT The majority of newly diagnosed brain tumors are treated with surgery, radiation, and the chemotherapeutic temozolomide. Development of additional therapeutics to improve treatment outcomes is complicated by the blood-brain barrier (BBB), which acts to protect healthy tissue from chemical insults. The high pressure found within brain tumors adds a challenge to local delivery of therapy by limiting the distribution of bolus injections. Here we discuss various drug delivery strategies, including convection-enhanced delivery, intranasal delivery, and intrathecal delivery, as well as pharmacological strategies for improving therapeutic efficacy, such as blood-brain barrier disruption.

0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A protein delivery method using freeze concentration was presented with a variety of polyampholyte nanocarriers. In order to develop protein nanocarriers, hydrophobically modified polyampholytes were synthesized by the succinylation of ε-poly-l-lysine with dodecyl succinic anhydride and succinic anhydride. The self-assembled polyampholyte aggregated form nanoparticles through intermolecular hydrophobic and electrostatic interactions when dissolved in aqueous media. The cationic and anionic nanoparticles were easily prepared by changing the succinylation ratio. Anionic or cationic proteins were adsorbed on/into the nanoparticles depending on their surface charges. The protein-loaded nanoparticles were stable for at least 7 d. When L929 cells were frozen with the protein-loaded nanoparticles in the presence of a cryoprotectant, the adsorption of the protein-loaded nanoparticles was enhanced and can be explained by the freeze concentration mechanism. After thawing, proteins were internalized into cells via endocytosis. This was the first report that showed that the efficacy of protein delivery was successfully enhanced by the freeze concentration method. This method could be useful for in vitro cytoplasmic protein or peptide delivery to various cells for immunotherapy or phenotype transformations.
    Biomaterials 05/2014; DOI:10.1016/j.biomaterials.2014.04.030 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The treatment of a brain glioma is still one of the most difficult challenges in oncology. To effectively treat brain glioma and reduce the side effects, drugs must be transported across the blood brain barrier (BBB) and then targeted to the brain cancer cells because most anti-tumor drugs are highly toxic to the normal brain tissue. A cascade delivery strategy was developed to perform these two aims and to achieve enhanced and precisely targeted delivery. Herein, we utilize a phage-displayed TGN peptide and an AS1411 aptamer, which are specific targeting ligands of the BBB and cancer cells, respectively and we conjugate them with nanoparticles to establish the brain glioma cascade delivery system (AsTNP). In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could not only target endothelial and tumor cells but also penetrate the endothelial monolayers and tumor cells to reach the core of the tumor spheroids, which was extremely important but mostly ignored in glioma therapy. In vivo imaging further demonstrated that the AsTNP provided the highest tumor distribution and tumor/normal brain ratio. The distribution was also reconfirmed by fluorescent images of the brain slides. As a result, the docetaxel-loaded AsTNP presents the best anti-glioma effect with improved glioma bearing survival. In conclusion, the AsTNP could precisely target to the brain glioma, which was a valuable target for glioma imaging and therapy.
    Biomaterials 04/2012; 33(20):5115-23. DOI:10.1016/j.biomaterials.2012.03.058 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114 nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm and that more than one-quarter of all pores are ≥ 100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible.
    Science translational medicine 08/2012; 4(149):149ra119. DOI:10.1126/scitranslmed.3003594 · 14.41 Impact Factor