Article

Inhibition of tumor cell growth, proliferation and migration by X-387, a novel active-site inhibitor of mTOR

Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, PR China.
Biochemical pharmacology (Impact Factor: 4.25). 01/2012; 83(9):1183-94. DOI: 10.1016/j.bcp.2012.01.019
Source: PubMed

ABSTRACT The mammalian target of rapamycin (mTOR), is deregulated in about 50% of human malignancies and exists in two complexes: mTORC1 and mTORC2. Rapalogs partially inhibit mTORC1 through allosteric binding to mTORC1 and their efficacy is modest as a cancer therapy. A few mTOR kinase inhibitors that inhibit both mTORC1 and mTORC2 have been reported to possess potent anticancer activities. Herein, we designed and synthesized a series of pyrazolopyrimidine derivatives targeting mTOR kinase domain and X-387 was identified as a promising lead. X-387 selectively inhibited mTOR in an ATP-competitive manner while sparing a panel of kinases from the PIKK family. X-387 blocked mTORC1 and mTORC2-mediacted signaling pathway in cell lines with activated mTOR signaling and in rapamycin-resistant cells. Specifically, X-387 inhibited phosphorylation of AKT at T308, which is thought to be a target of PDK1 but not mTOR. Such activity was not due to inhibition of PI3K since X-387 did not inhibit translocation of AKT to the cell membrane. X-387 induced autophagy as observed for other mTOR inhibitors, while induced autophagy is pro-survival since concurrent inhibition of autophagy by 3-MA reinforced the antiproliferative activity of mTOR inhibitors. X-387 also inhibited cell motility, which is associated with decrease in activity of small GTPases such as RhoA, Rac1 and Cdc42. Taken together, X-387 is a promising compound lead targeting mTOR and with a wide spectrum anticancer activity among tumor cell lines. The data also underscores the complexity of the mTOR signaling pathways which are far from being understood.

0 Bookmarks
 · 
288 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatidylinositol 3-kinases (PI3K) and phosphatidylinositol 3-kinase-related protein kinases (PIKK) are two related families of kinases, which play key roles in regulation of cell's proliferation, metabolism, migration, survival and responses to diverse stresses including DNA damage. To design novel efficient strategies for treatment of cancer and other diseases, these kinases have been extensively studied. Despite their different nature, these two kinase families have related origin and share very similar kinase domains. Therefore, chemical inhibitors of these kinases usually carry analogous structural motifs. The most common feature of these inhibitors is a critical hydrogen bond to morpholine oxygen, initially present in the early nonspecific PI3K and PIKK inhibitor 3 (LY294002), which served as a valuable chemical tool for development of many additional PI3K and PIKK inhibitors. Whilst several PI3K pathway inhibitors have recently shown promising clinical responses, inhibitors of the, DNA damage-related PIKKs remain thus far largely in preclinical development.
    Journal of Medicinal Chemistry 11/2014; DOI:10.1021/jm501026z · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pain represents a major public health problem worldwide. Current pharmacological treatments for chronic pain syndromes, including neuropathic pain, are only partially effective, with significant pain relief achieved in 40-60% of patients. Recent studies suggest that the mammalian target of rapamycin (mTOR) kinase and downstream effectors may be implicated in the development of chronic inflammatory, neuropathic, and cancer pain. The expression and activity of mTOR have been detected in peripheral and central regions involved in pain transmission. mTOR immunoreactivity was found in primary sensory axons, in dorsal root ganglia (DRG), and in dorsal horn neurons. This kinase is a master regulator of protein synthesis, and it is critically involved in the regulation of several neuronal functions, including the synaptic plasticity that is a major mechanism leading to the development of chronic pain. Enhanced activation of this pathway is present in different experimental models of chronic pain. Consistently, pharmacological inhibition of the kinase activity turned out to have significant antinociceptive effects in several experimental models of inflammatory and neuropathic pain. We will review the main evidence from animal and human studies supporting the hypothesis that mTOR may be a novel pharmacological target for the management of chronic pain.
    BioMed Research International 2015:394257. DOI:10.1155/2015/394257 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cell acute lymphoblastic leukemia (B-ALL) is the most common hematological malignancy diagnosed in children, and blockade of the abnormally activated PI3Kδ displayed promising outcomes in B cell acute or chronic leukemias, but the mechanisms are not well understood. Here we report a novel PI3Kδ selective inhibitor X-370, which displays distinct binding mode with p110δ and blocks constitutively active or stimulus-induced PI3Kδ signaling. X-370 significantly inhibited survival of human B cell leukemia cells in vitro, with associated induction of G1 phase arrest and apoptosis. X-370 abrogated both Akt and Erk1/2 signaling via blockade of PDK1 binding to and/or phosphorylation of MEK1/2. Forced expression of a constitutively active MEK1 attenuated the antiproliferative activity of X-370. X-370 preferentially inhibited the survival of primary pediatric B-ALL cells displaying PI3Kδ-dependent Erk1/2 phosphorylation, while combined inhibition of PI3Kδ and MEK1/2 displayed enhanced activity. We conclude that PI3Kδ inhibition led to abrogation of both Akt and Erk1/2 signaling via a novel PI3K-PDK1/MEK1/2-Erk1/2 signaling cascade, which contributed to its efficacy against B-ALL. These findings support the rationale for clinical testing of PI3Kδ inhibitors in pediatric B-ALL and provide insights needed to optimize the therapeutic strategy.
    Oncotarget 09/2014; · 6.63 Impact Factor