Electrophysiological evaluation of sensory and motor pathways after incomplete unilateral spinal cord contusion: Laboratory investigation

Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Journal of neurosurgery. Spine (Impact Factor: 2.38). 02/2012; 16(4):414-23. DOI: 10.3171/2012.1.SPINE11684
Source: PubMed

ABSTRACT Unilateral contusions represent an increasingly popular model for studying the pathways and recovery mechanisms of spinal cord injury (SCI). Current studies rely heavily on motor behavior scoring and histological evidence to make assessments. Electrophysiology represents one way to reliably quantify the functionality of motor pathways. The authors sought to quantify the functional integrity of the bilateral motor and sensory pathways following unilateral SCI by using measurements of motor and somatosensory evoked potentials (MEPs and SSEPs, respectively).
Eighteen rats were randomly divided into 3 groups receiving a mild unilateral contusion, a mild midline contusion, or a laminectomy only (control). Contusions were induced at T-8 using a MASCIS impactor. Electrophysiological analysis, motor behavior scoring, and histological quantifications were then performed to identify relationships among pathway conductivity, motor function, and tissue preservation.
Hindlimb MEPs ipsilateral to the injury showed recovery by Day 28 after injury and corresponded to approximately 61% of spared corticospinal tract (CST) tissue. In contrast, MEPs of the midline-injured group did not recover, and correspondingly > 90% of the CST tissue was damaged. Somatosensory evoked potentials showed only a moderate reduction in amplitude, with no difference in latency for the pathways ipsilateral to injury. Furthermore, these SSEPs were significantly better than those of the midline-injured rats for the same amount of white matter damage.
Motor evoked potential recovery corresponded to the amount of spared CST in unilateral and midline injuries, but motor behavior consistently recovered independent of MEPs. These data support the idea that spared contralateral pathways aid in reducing the functional deficits of injured ipsilateral pathways and further support the idea of CNS plasticity.

Download full-text


Available from: Faith A Bazley, Mar 26, 2015
1 Follower
30 Reads
  • Source
    • "This procedure created a precise contusion injury to only one-half of the spinal cord. The method of unilateral injury was described in detail and validated using histology in our previously published work [14]. To ensure consistence among all rats, biomechanical parameters including the impact velocity, height, time and the dynamic force applied to the cord were precisely recorded and monitored using the MASCIS Impactor software (Rutgers University). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The adult central nervous system is capable of significant reorganization and adaptation following neurotrauma. After a thoracic contusive spinal cord injury (SCI) neuropathways that innervate the cord below the epicenter of injury are damaged, with minimal prospects for functional recovery. In contrast, pathways above the site of injury remain intact and may undergo adaptive changes in response to injury. We used cortical somatosensory evoked potentials (SSEPs) to evaluate changes in intact forelimb pathways. Rats received a midline contusion SCI, unilateral contusion SCI, or laminectomy with no contusion at the T8 level and were monitored for 28 days post-injury. In the midline injury group, SSEPs recorded from the contralateral forelimb region of the primary somatosensory cortex were 59.7% (CI 34.7%, 84.8%; c(2) = 21.9; dof = 1; p = 2.9 x 10(-6)) greater than the laminectomy group; SSEPs from the ipsilateral somatosensory cortex were 47.6% (CI 18.3%, 77%; c(2) = 10.1; dof = 1; p = 0.001) greater. Activation of the ipsilateral somatosensory cortex was further supported by BOLD-fMRI, which showed increased oxygenation at the ipsilateral hemisphere at day seven post-injury. In the unilateral injury group, ipsilesional side was compared to the contralesional side. SSEPs on day 14 (148%; CI 111%, 185%) and day 21 (137%; CI 110%, 163%) for ipsilesional forelimb stimulation were significantly increased over baseline (100%). SSEPs recorded from the hindlimb sensory cortex upon ipsilesional stimulation were 33.9% (CI 14.3%, 53.4%; c(2) = 11.6; dof = 1; p = 0.007) greater than contralesional stimulation. Therefore, these results demonstrate the ability of SSEPs to detect significant enhancements in the activation of forelimb sensory pathways following both midline and unilateral contusive SCI at T8. Reorganization of forelimb pathways may occur after thoracic SCI, which SSEPs can monitor to aid the development of future therapies.
    IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 04/2014; 22(5). DOI:10.1109/TNSRE.2014.2319313 · 3.19 Impact Factor
  • Source
    • "Received February 3, 2013. described [3] [9] [10] [11] [12] [13] [14] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypothermia has been shown to be an effective treatment for spinal cord injury. Local hypothermia is advantageous because it avoids inducing systemic side effects of general hypothermia while providing the opportunity for greater temperature reduction at the site of injury, which may contribute to increased neuroprotection. We report a new semi-invasive method for inducing local hypothermia in rats' spinal cords. Our method does not require laminectomy or penetration of the dura and is more effective at cooling the cord than transcutaneous approaches. We show that we were successfully able to cool the spinal cord to 30.2±0.3°C for 2 hours with rectal temperature maintained at 37.3±0.3°C after a spinal cord contusion injury. We also validated our method in control rats that received only a laminectomy. Furthermore, this method was able to reliably cool and rewarm the cord at a steady rate (Δ5.5°C in 30 min, or 0.2°C/min). Future work will include validating long-term functional improvements of injured rats after treatment and to apply local cooling to other spinal cord injury models, such as compression injuries.
    IEEE Engineering in Medicine and Biology Conf 2013; 07/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the feasibility of using diffusion tensor magnetic resonance imaging (DT-MRI) to study a contusive model of rat spinal cord injury following human stem cell transplantation at and around the site of injury. Rats receiving either a laminectomy or contusion injury were transplanted with oligodendrocyte precursor cells (OPCs). During the course of the study, bioluminescence imaging (BLI; up to 100 days) and somatosensory evoked potentials (SSEPs; up to 42 days) were used to evaluate cell survival and functional outcomes. Spinal cords were then analyzed ex vivo upon termination using diffusion tensor imaging (DTI). Improvements in fractional anisotropy (FA) at day 100 post-transplantation corresponded with cell survival and functional SSEP improvements. Thus, we illustrate the feasibility of DTI for evaluating axonal integrity in SCI after cell replacement therapies, and we provide examples utilizing OPC transplantations in a contusion rat model.
    IEEE Engineering in Medicine and Biology Conference 2012; 08/2012
Show more