Article

E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells.

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
Journal of Cell Science (Impact Factor: 5.88). 02/2012; 125(Pt 5):1284-95. DOI: 10.1242/jcs.095422
Source: PubMed

ABSTRACT Nrf2 has an anti-carcinogenic effect. However, an increase in Nrf2 activity is also implicated in cancer chemoresistance. A switch from E-cadherin to N-cadherin affects the transdifferentiation and metastasis of cancer cells. In view of the key role of this switch in cancer malignancy, we investigated the regulatory effect of E-cadherin on Nrf2. In HEK293 cells, overexpression of E-cadherin inhibited the nuclear accumulation of Nrf2, and prevented Nrf2-dependent gene induction. GST pull-down and immunocytochemical assays verified the interaction between E-cadherin and Nrf2: E-cadherin bound the C-terminus of Nrf2, but not its N-terminus, which comprises the Neh2 domain responsible for phosphorylation of Ser40. Our finding that the mutation of Ser40 to alanine in Nrf2 did not affect the ability of E-cadherin to bind Nrf2 and repress target gene transactivation suggests that E-cadherin might not disturb the phosphorylation. Studies using mutant constructs of E-cadherin suggested that the β-catenin-binding domain contributes to the inhibitory effect of E-cadherin on Nrf2. Consistently, knockdown of β-catenin attenuated not only the effect of E-cadherin binding to Nrf2, but also Keap1-dependent ubiquitylation of Nrf2, and thereby increased Nrf2 activity, supporting the involvement of β-catenin in the interactions. Collectively, E-cadherin recruits Nrf2 through β-catenin, and assists the function of Keap1 for the inhibition of nuclear localization and transcriptional activity of Nrf2. In HepG2 cells, the loss of E-cadherin by either siRNA knockdown or treatment with TGFβ1 enhanced the constitutive or inducible activity of Nrf2, implying that chemoresistance of cancer cells upon the loss of E-cadherin might be associated with Nrf2.

0 Bookmarks
 · 
190 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy.
    Biochimica et biophysica acta. 05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a key transcription factor that regulates the expression of over a hundred cytoprotective and antioxidant genes that provide cellular protection from reactive oxygen species. Chemotherapy resistance in several cancers has been linked to dysregulation of the NRF2 signalling pathway, moreover there is growing evidence that NRF2 may contribute to tumorigenesis. MicroRNA (miRNA) are small non-coding RNA sequences that post-transcriptionally regulate mRNA sequences. In cancer pathogenesis, aberrantly expressed miRNAs can act as either tumor suppressor or oncogenic miRNA. Recent evidence has been described that identifies a number of miRNA that can be regulated by NRF2. This review outlines the importance of NRF2 in regulating miRNA, and the functional role this may have in the tumorigenesis of human malignancies and their chemotherapy resistance.
    Oncotarget 08/2013; 4(8):1130-42. · 6.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nrf2 has gained great attention with respect to its pivotal role in cell and tissue protection. Primarily defending cells against metabolic, xenobiotic and oxidative stress, Nrf2 is essential for maintaining tissue integrity. Owing to these functions, Nrf2 is regarded as a promising drug target in the chemoprevention of diseases, including cancer. However, much evidence has accumulated that the beneficial role of Nrf2 in cancer prevention essentially depends on the tight control of its activity. In fact, the deregulation of Nrf2 is a critical determinant in oncogenesis and found in many types of cancer. Therefore, amplified Nrf2 activity has profound effects on the phenotype of tumor cells, including radio/chemoresistance, apoptosis protection, invasiveness, antisenescence, autophagy deficiency, and angiogenicity. The deregulation of Nrf2 can result from various epigenetic and genetic alterations directly affecting Nrf2 control or from the complex interplay of Nrf2 with numerous oncogenic signaling pathways. Additionally, alterations of the cellular environment, eg, during inflammation, contribute to Nrf2 deregulation and its persistent activation. Therefore, the status of Nrf2 as anti- or protumorigenic is defined by many different modalities. A better understanding of these modalities is essential for the safe use of Nrf2 as an activation target for chemoprevention on the one hand and as an inhibition target in cancer therapy on the other. The present review mainly addresses the conditions that promote the oncogenic function of Nrf2 and the resulting consequences providing the rationale for using Nrf2 as a target structure in cancer therapy.
    OncoTargets and Therapy 01/2014; 7:1497-518. · 2.07 Impact Factor