Endocrine fibroblast growth factors 15/19 and 21: from feast to famine.

Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
Genes & development (Impact Factor: 12.64). 02/2012; 26(4):312-24. DOI: 10.1101/gad.184788.111
Source: PubMed

ABSTRACT We review the physiology and pharmacology of two atypical fibroblast growth factors (FGFs)-FGF15/19 and FGF21-that can function as hormones. Both FGF15/19 and FGF21 act on multiple tissues to coordinate carbohydrate and lipid metabolism in response to nutritional status. Whereas FGF15/19 is secreted from the small intestine in response to feeding and has insulin-like actions, FGF21 is secreted from the liver in response to extended fasting and has glucagon-like effects. FGF21 also acts in an autocrine fashion in several tissues, including adipose. The pharmacological actions of FGF15/19 and FGF21 make them attractive drug candidates for treating metabolic disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background- Long chain acyl-CoA synthetases (ACSL) catalyze long-chain fatty acids (FA) conversion to acyl-CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1H-/-) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. Methods and Results- Metabolomics analysis identified 60 metabolites altered in Acsl1H-/- hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1H-/- hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1H/ mice increased expression of several Hif1a-responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid-responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. Conclusions- The switch from FA to glucose use causes mTOR-dependent alterations in cardiac metabolism. We identified cardiac mTOR-regulated genes not previously identified in other cellular models, suggesting heart-specific mTOR signaling. Increased glucose use also changed glutathione-related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign.
    Journal of the American Heart Association 02/2015; 4(2). DOI:10.1161/JAHA.114.001136 · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2015 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.
    03/2015; DOI:10.1002/wdev.176

Full-text (2 Sources)

Available from
Aug 8, 2014