Contrast-Enhanced Magnetic Resonance Microangiography Reveals Remodeling of the Cerebral Microvasculature in Transgenic ArcA beta Mice

Institute for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, CH-8093 Zurich, Switzerland.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 02/2012; 32(5):1705-13. DOI: 10.1523/JNEUROSCI.5626-11.2012
Source: PubMed

ABSTRACT Amyloid-β (Aβ) deposition in the cerebral vasculature is accompanied by remodeling which has a profound influence on vascular integrity and function. In the current study we have quantitatively assessed the age-dependent changes of the cortical vasculature in the arcAβ model of cerebral amyloidosis. To estimate the density of the cortical microvasculature in vivo, we used contrast-enhanced magnetic resonance microangiography (CE-μMRA). Three-dimensional gradient echo datasets with 60 μm isotropic resolution were acquired in 4- and 24-month-old arcAβ mice and compared with wild-type (wt) control mice of the same age before and after administration of superparamagnetic iron oxide nanoparticles. After segmentation of the cortical vasculature from difference images, an automated algorithm was applied for assessing the number and size distribution of intracortical vessels. With CE-μMRA, cerebral arteries and veins with a diameter of less than the nominal pixel resolution (60 μm) can be visualized. A significant age-dependent reduction in the number of functional intracortical microvessels (radii of 20-80 μm) has been observed in 24-month-old arcAβ mice compared with age-matched wt mice, whereas there was no difference between transgenic and wt mice of 4 months of age. Immunohistochemistry demonstrated strong fibrinogen and Aβ deposition in small- and medium-sized vessels, but not in large cerebral arteries, of 24-month-old arcAβ mice. The reduced density of transcortical vessels may thus be attributed to impaired perfusion and vascular occlusion caused by deposition of Aβ and fibrin. The study demonstrated that remodeling of the cerebrovasculature can be monitored noninvasively with CE-μMRA in mice.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Impairment of brain functional connectivity (FC) is thought to be an early event occurring in diseases with cerebral amyloidosis, such as Alzheimer's disease. Regions sustaining altered functional networks have been shown to colocalize with regions marked with amyloid plaques burden suggesting a strong link between FC and amyloidosis. Whether the decline in FC precedes amyloid plaque deposition or is a consequence thereof is currently unknown. The sequence of events during early stages of the disease is difficult to capture in humans due to the difficulties in providing an early diagnosis and also in view of the heterogeneity among patients. Transgenic mouse lines overexpressing amyloid precursor proteins develop cerebral amyloidosis and constitute an attractive model system for studying the relationship between plaque and functional changes. In this study, ArcAβ transgenic and wild-type mice were imaged using resting-state fMRI methods across their life-span in a cross-sectional design to analyze changes in FC in relation to the pathology. Transgenic mice show compromised development of FC during the first months of postnatal life compared with wild-type animals, resulting in functional impairments that affect in particular the sensory-motor cortex already in preplaque stage. These functional alterations were accompanied by structural changes as reflected by reduced fractional anisotropy values, as derived from diffusion tensor imaging. Our results suggest cerebral amyloidosis in mice is preceded by impairment of neuronal networks and white matter structures. FC analysis in mice is an attractive tool for studying the implications of impaired neuronal networks in models of cerebral amyloid pathology.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2014; 34(41):13780-9. DOI:10.1523/JNEUROSCI.4762-13.2014 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persistent systemic hypoxia, a direct consequence of alterations in vascular function, can compromise the brain by increasing the risk of developing dementias such as Alzheimer's disease (AD). Vascular contributions to cognitive impairment and AD in aged individuals are common, and several vascular risk factors for AD are linked to hypoxia. Clinical evidence confirms that structural and functional changes characteristic of AD pathology also occur following hypoxic-ischemic events such as stroke and traumatic brain injury. Studies with transgenic and non-transgenic mouse models reliably show that hypoxia increases the levels of amyloid-β peptides that form the characteristic plaques in AD brains. Moreover, some studies suggest that vascular lesions also promote tau phosphorylation, modulate apolipoprotein E expression, and have more profound in effects in aged animals, but additional evidence is needed to establish these findings. Although the mechanisms underlying hypoxia-related effects remain unclear, controlled animal studies continue to reveal mechanistic aspects of the relationship between hypoxia and AD pathology that are necessary for therapeutic developments. The present review summarizes evidence from rodent studies regarding the effects of hypoxia on AD-related pathology and evaluates its impact on understanding human disease.
    Journal of Alzheimer's disease: JAD 06/2014; 42(3). DOI:10.3233/JAD-140144 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common form of dementia and has no effective treatment. Besides the well-known pathologic characteristics, this disease also has a vascular component, and substantial evidence shows increased thrombosis as well as a critical role for fibrin(ogen) in AD. This molecule has been implicated in neuroinflammation, neurovascular damage, blood-brain barrier permeability, vascular amyloid deposition, and memory deficits that are observed in AD. Here, we present evidence demonstrating that fibrin deposition increases in the AD brain and correlates with the degree of pathology. Moreover, we show that fibrin(ogen) is present in areas of dystrophic neurites and that a modest decrease in fibrinogen levels improves neuronal health and ameliorates amyloid pathology in the subiculum of AD mice. Our results further characterize the important role of fibrin(ogen) in this disease and support the design of therapeutic strategies aimed at blocking the interaction between fibrinogen and amyloid-β (Aβ) and/or normalizing the increased thrombosis present in AD. Copyright © 2014 Elsevier Inc. All rights reserved.
    Neurobiology of Aging 10/2014; DOI:10.1016/j.neurobiolaging.2014.10.030 · 4.85 Impact Factor