Mitochondria-Targeted Superoxide Dismutase (SOD2) Regulates Radiation Resistance and Radiation Stress Response in HeLa Cells

Department of Biological Sciences, Graduate School of Science, Kyoto University, Japan.
Journal of Radiation Research (Impact Factor: 1.69). 01/2012; 53(1):58-71. DOI: 10.1269/jrr.11034
Source: PubMed

ABSTRACT Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following γ-irradiation. The levels of γH2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSox(TM) Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of γ-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of γ-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation.

Download full-text


Available from: Qiu-Mei Zhang-Akiyama, Feb 06, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the earliest responses to a DNA double-strand break (DSB) is the carboxy-terminal phosphorylation of budding yeast H2A (metazoan histone H2AX) to create gammaH2A (or gammaH2AX). This chromatin modification stretches more than tens of kilobases around the DSB and has been proposed to play numerous roles in break recognition and repair, although it may not be the primary signal for many of these events. Studies suggest that gammaH2A(X) has 2 more direct roles: (i) to recruit cohesin around the DSB, and (ii) to maintain a checkpoint arrest. Recent work has identified other factors, including chromatin remodelers and protein phosphatases, which target gammaH2A(X) and regulate DSB repair/recovery.
    Biochemistry and Cell Biology 09/2006; 84(4):568-77. DOI:10.1139/o06-072 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The integrity of the epidermis and mucosal epithelia is highly dependent on resident self-renewing stem cells, which makes them vulnerable to physical and chemical insults compromising the repopulating capacity of the epithelial stem cell compartment. This is frequently the case in cancer patients receiving radiation or chemotherapy, many of whom develop mucositis, a debilitating condition involving painful and deep mucosal ulcerations. Here, we show that inhibiting the mammalian target of rapamycin (mTOR) with rapamycin increases the clonogenic capacity of primary human oral keratinocytes and their resident self-renewing cells by preventing stem cell senescence. This protective effect of rapamycin is mediated by the increase in expression of mitochondrial superoxide dismutase (MnSOD), and the consequent inhibition of ROS formation and oxidative stress. mTOR inhibition also protects from the loss of proliferative basal epithelial stem cells upon ionizing radiation in vivo, thereby preserving the integrity of the oral mucosa and protecting from radiation-induced mucositis.
    Cell stem cell 09/2012; 11(3):401-14. DOI:10.1016/j.stem.2012.06.007 · 22.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several authors have suggested that low level laser light may have a positive influence on side effects caused by ionizing radiation therapy. We therefore studied indicators of oxidative stress after exposure to gamma radiation with or without pre-exposure to low level laser light. Groups of mice were exposed to light from a laser diode at a wavelength of 830nm, delivering an energy of 20 or 100J to 1cm(2) in the abdominal part of the animal with a power density of 300mW/cm(2) in continuous regime. Following this treatment (or sham irradiation), mice were irradiated with graded doses of (60)Co gamma rays. Levels of superoxide dismutase and malondialdehyde were measured in murine blood cells 30min or 3days after exposure. For both time points, there was a clear increase of superoxide dismutase and malondialdehyde with gamma dose, but laser light (alone or in combination with gamma irradiation) did not seem to have any influence on either parameter. Because the physical parameters in our experiments were similar to those of studies showing a positive effect of laser pre-exposure, we conclude that the lack of an observed effect in our case was due to differences in biological parameters, i.e. to differences between the tissues or cell types studied. It is also possible, of course, that laser effects would be seen mainly in the skin immediately exposed, and not to the same degree in blood cells circulating through that area, which were exposed to considerably smaller laser energies.
    Journal of photochemistry and photobiology. B, Biology 09/2012; 117C:111-114. DOI:10.1016/j.jphotobiol.2012.08.009 · 2.80 Impact Factor
Show more