Article

Alzheimer's disease and age-related macular degeneration have different genetic models for complement gene variation.

King's College London, Institute of Psychiatry, De Crespigny Park, London, UK.
Neurobiology of aging (Impact Factor: 5.94). 01/2012; 33(8):1843.e9-17. DOI: 10.1016/j.neurobiolaging.2011.12.036
Source: PubMed

ABSTRACT Alzheimer's disease (AD) and age-related macular degeneration (AMD) are both neurodegenerative disorders which share common pathological and biochemical features of the complement pathway. The aim of this study was to investigate whether there is an association between well replicated AMD genetic risk factors and AD. A large cohort of AD (n = 3898) patients and controls were genotyped for single nucleotide polymorphisms (SNPs) in the complement factor H (CFH), the Age-related maculopathy susceptibility protein 2 (ARMS2) the complement component 2 (C2), the complement factor B (CFB), and the complement component 3 (C3) genes. While significant but modest associations were identified between the complement factor H, the age-related maculopathy susceptibility protein 2, and the complement component 3 single nucleotide polymorphisms and AD, these were different in direction or genetic model to that observed in AMD. In addition the multilocus genetic model that predicts around a half of the sibling risk for AMD does not predict risk for AD. Our study provides further support to the hypothesis that while activation of the alternative complement pathway is central to AMD pathogenesis, it is less involved in AD.

1 Bookmark
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
    Advances in experimental medicine and biology 01/2013; 735:1-22. · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several lines of inquiry point to overlapping molecular mechanisms between late-onset Alzheimer disease (AD) and age-related macular degeneration (AMD). We evaluated summarized results from large genome-wide association studies for AD and AMD to test the hypothesis that AD susceptibility loci are also associated with AMD. We observed association of both disorders with genes in a region of chromosome 7, including PILRA and ZCWPW1 (peak AMD SNP rs7792525, minor allele frequency [MAF] = 19%, odds ratio [OR] = 1.14, p = 2.34 × 10(-6)), and with ABCA7 (peak AMD SNP rs3752228, MAF = 0.054, OR = 1.22, p = 0.00012). Next, we evaluated association of AMD with genes in AD-related pathways identified by canonical pathway analysis of AD-associated genes. Significant associations were observed with multiple previously identified AMD risk loci and 2 novel genes: HGS (peak SNP rs8070488, MAF = 0.23, OR = 0.91, p = 7.52 × 10(-5)), which plays a role in the clathrin-mediated endocytosis signaling pathway, and TNF (peak SNP rs2071590, MAF = 0.34, OR = 0.89, p = 1.17 × 10(-5)), which is a member of the atherosclerosis signaling and the LXR/RXR activation pathways. Our results suggest that AMD and AD share genetic mechanisms.
    Neurobiology of aging 12/2013; · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular deposit of amyloid beta (Aβ) is a common pathologic feature in both age-related macular degeneration (AMD) and Alzheimer's disease, but the role of intracellular Aβ on the tight junction of the retinal pigment epithelium (RPE) is unknown. In this study, we investigated the intracellular Aβ expression and its role on the outer blood retinal barrier in the retina of 5XFAD mice, a mouse model of Alzheimer's disease. The retina of 5XFAD mice showed the pathologic features of AMD with intracellular Aβ in the RPE. As intracellular Aβ accumulated, zonular occludens-1 and occludin were markedly attenuated and lost their integrity as tight junctions in the RPE of 5XFAD mice. Also, Aβ42 uptake by ARPE-19 cells induced the tight junction breakdown of zonular occludens-1 and occludin without cell death. These results implicate that intracellular Aβ42 could play a role in the breakdown of the outer blood retinal barrier in 5XFAD mice. Thus, we suggested that 5XFAD mice could be a mouse model of dry AMD with regard to the Aβ42 related pathology.
    Neurobiology of aging 03/2014; · 5.94 Impact Factor