Article

Regulatory T cells exhibit decreased proliferation but enhanced suppression after pulsing with sirolimus.

The Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.
American Journal of Transplantation (Impact Factor: 6.19). 02/2012; 12(6):1441-57. DOI: 10.1111/j.1600-6143.2011.03963.x
Source: PubMed

ABSTRACT Although regulatory T cells (Tregs) suppress allo-immunity, difficulties in their large-scale production and in maintaining their suppressive function after expansion have thus far limited their clinical applicability. Here we have used our nonhuman primate model to demonstrate that significant ex vivo Treg expansion with potent suppressive capacity can be achieved and that Treg suppressive capacity can be further enhanced by their exposure to a short pulse of sirolimus. Both unpulsed and sirolimus-pulsed Tregs (SPTs) are capable of inhibiting proliferation of multiple T cell subpopulations, including CD4(+) and CD8(+) T cells, as well as antigen-experienced CD28(+) CD95(+) memory and CD28(-) CD95(+) effector subpopulations. We further show that Tregs can be combined in vitro with CTLA4-Ig (belatacept) to lead to enhanced inhibition of allo-proliferation. SPTs undergo less proliferation in a mixed lymphocyte reaction (MLR) when compared with unpulsed Tregs, suggesting that Treg-mediated suppression may be inversely related to their proliferative capacity. SPTs also display increased expression of CD25 and CTLA4, implicating signaling through these molecules in their enhanced function. Our results suggest that the creation of SPTs may provide a novel avenue to enhance Treg-based suppression of allo-immunity, in a manner amenable to large-scale ex vivo expansion and combinatorial therapy with novel, costimulation blockade-based immunosuppression strategies.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease is characterized by dysregulated immune responses in inflamed intestine, with dominance of interleukin-17 (IL-17) -producing cells and deficiency of regulatory T (Treg) cells. The aim of this study was to investigate the effect and mechanisms of sirolimus, an inhibitor of the mammalian target of rapamycin, on immune responses in a murine model of Crohn's disease. Murine colitis was induced by intrarectal administration of 2,4,6-trinitrobenzene sulphonic acid at day 0. Mice were then treated intraperitoneally with sirolimus daily for 3 days. The gross and histological appearances of the colon and the numbers, phenotype and cytokine production of lymphocytes were compared with these characteristics in a control group. Sirolimus treatment significantly decreased all macroscopic, microscopic and histopathological parameters of colitis that were analysed. The therapeutic effects of sirolimus were associated with a down-regulation of pro-inflammatory cytokines tumour necrosis factor-α, IL-6 and IL-17A. Intriguingly, sirolimus administration resulted in a prominent up-regulation of the regulatory cytokine transforming growth factor-β. Supporting the hypothesis that sirolimus directly affects the functional activity of CD4+ CD25+ Treg cells, we observed a remarkable enhancement of FoxP3 expression in colon tissues and isolated CD4+ T cells of sirolimus-treated mice. Simultaneously, sirolimus treatment led to a significant reduction in the number of CD4+ IL-17A+ T cells in the mesenteric lymph node cells as well as IL-17A production in mesenteric lymph node cells. Therefore, sirolimus may offer a promising new therapeutic strategy for the treatment of inflammatory bowel disease.
    Immunology 08/2013; 139(4). · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The immunosuppressive drug rapamycin (RAPA) has been used clinically to prevent graft rejection since 1999 because of its suppressive effects on T cell activation and proliferation. Recently, many studies have suggested that RAPA also has the potential to promote tolerance by driving the expansion of naturally occurring regulatory T (Treg) cells, and facilitating the de novo generation of induced Treg cells, which has aroused great interest in its potential ability to promote tolerance after transplantation. However, its effect on Treg cells remains controversial both in vitro and in vivo. Here, we systematically analyzed data on the effects of RAPA from both clinical and basic studies: (1) To compare its clinical effect with calcineurin inhibitors in transplant recipients, and discuss whether its effects on graft survival correlates with its effects on Treg cells. (2) To analyze the effects of RAPA on Treg cells from animal and in vitro studies, and to investigate whether the effects of RAPA on Treg cells was dependent on dosage and timing. (3) To discuss the mechanisms involved and how they might be applied to induce transplant tolerance.
    Immunology letters. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The myriad of co-stimulatory signals expressed, or induced, upon T-cell activation suggests that these signalling pathways shape the character and magnitude of the resulting autoreactive or alloreactive T-cell responses during autoimmunity or transplantation, respectively. Reducing pathological T-cell responses by targeting T-cell co-stimulatory pathways has met with therapeutic success in many instances, but challenges remain. In this Review, we discuss the T-cell co-stimulatory molecules that are known to have critical roles during T-cell activation, expansion, and differentiation. We also outline the functional importance of T-cell co-stimulatory molecules in transplantation, tolerance and autoimmunity, and we describe how therapeutic blockade of these pathways might be harnessed to manipulate the immune response to prevent or attenuate pathological immune responses. Ultimately, understanding the interplay between individual co-stimulatory and co-inhibitory pathways engaged during T-cell activation and differentiation will lead to rational and targeted therapeutic interventions to manipulate T-cell responses and improve clinical outcomes.
    Nature Reviews Nephrology 10/2013; · 7.94 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Jun 16, 2014