Article

Cross-species Comparisons of Transcriptomic Alterations in Human and Rat Primary Hepatocytes Exposed to 2,3,7,8-Tetrachlorodibenzo-p-dioxin

The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA.
Toxicological Sciences (Impact Factor: 4.48). 02/2012; 127(1):199-215. DOI: 10.1093/toxsci/kfs069
Source: PubMed

ABSTRACT A toxicogenomics approach was used to qualitatively and quantitatively compare the gene expression changes in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Hepatocytes from five individual rats and five individual humans were exposed for 24 h to 11 concentrations of TCDD ranging from 0.00001 to 100nM and a vehicle control. Gene expression changes were analyzed using whole-genome microarrays containing 13,002 orthologs. Significant changes in expression of individual orthologs at any concentration (fold change [FC] ± 1.5 and false discovery rate < 0.05) were higher in the rat (1547) compared with human hepatocytes (475). Only 158 differentially expressed orthologs were common between rats and humans. Enrichment analysis was performed on the differentially expressed orthologs in each species with 49 and 34 enriched human and rat pathways, respectively. Only 12 enriched pathways were shared between the two species. The results demonstrate significant cross-species differences in expression at both the gene and pathway level. Benchmark dose analysis of gene expression changes showed an average 18-fold cross-species difference in potency among differentially expressed orthologs with the rat more sensitive than the human. Similar cross-species differences in potency were observed for signaling pathways. Using the maximum FC in gene expression as a measure of efficacy, the human hepatocytes showed on average a 20% lower efficacy among the individual orthologs showing differential expression. The results provide evidence for divergent cross-species gene expression changes in response to TCDD and are consistent with epidemiological and clinical evidence showing humans to be less sensitive to TCDD-induced hepatotoxicity.

Download full-text

Full-text

Available from: Michael B Black, Jul 01, 2015
0 Followers
 · 
158 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria-to-nucleus communication, known as retrograde signaling, is important to adjust the nuclear gene expression in response to organelle dysfunction. Among the transcription factors described to respond to mitochondrial stress, CHOP-10 is activated by respiratory chain inhibition, mitochondrial accumulation of unfolded proteins and mtDNA mutations. In this study, we show that altered/impaired expression of mtDNA induces CHOP-10 expression in a signaling pathway that depends on the eIF2α/ATF4 axis of the integrated stress response rather than on the mitochondrial unfolded protein response.
    Mitochondrion 01/2015; 21. DOI:10.1016/j.mito.2015.01.005 · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxic equivalency factors (TEFs) for dioxin-like compounds (DLCs) are largely based on relative potency (REP) values derived from biochemical endpoints such as enzyme activity. As of yet, REPs based on gene expression changes have not been accounted for in the TEF values. In this study, primary rat hepatocytes were treated for 24 hours with 11 concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF), or 2,3,7,8-tetrachlorodibenzofuran (TCDF) ranging from 0.00001-100 nM. Differential changes in gene expression were analyzed using analysis of variance to assess the relative contributions of concentration, congener, and the interaction between concentration and congener for each gene. A total of 3,283 genes showed significant changes with concentration (FDR < 0.05 and fold-change ± 1.5 in at least one concentration for one congener). Among these genes, 399 were significant for both concentration and congener effects indicating parallel concentration response curves with significant differences in potency. Only eight genes showed a significant concentration and congener interaction term indicating a minority of genes show non-parallel dose response curves among the three congeners. Benchmark dose (BMD) modeling was used to derive BMD values for induced individual genes and signaling pathways. The REP values for 4-PeCDF and TCDF were generally three- to five-fold lower than the WHO TEF values on both a gene and pathway basis. These findings suggest that the WHO TEF values may possibly over-predict the potency of these PCDD/F congeners, and demonstrate the importance of identifying functional pathways relevant to the toxicological MOA for establishing pertinent REPs.
    Toxicological Sciences 12/2013; 136(2):595-604. DOI:10.1093/toxsci/kft203 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague-Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ~30-45-fold less TCDD in the liver at 7 days post exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species.
    Toxicology and Applied Pharmacology 07/2013; 272(2). DOI:10.1016/j.taap.2013.06.024 · 3.63 Impact Factor