Article

PP6 Regulatory Subunit R1 Is Bidentate Anchor for Targeting Protein Phosphatase-6 to DNA-dependent Protein Kinase

Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 02/2012; 287(12):9230-9. DOI: 10.1074/jbc.M111.333708
Source: PubMed

ABSTRACT DNA-dependent protein kinase (DNA-PK) becomes activated in response to DNA double strand breaks, initiating repair by the non-homologous end joining pathway. DNA·PK complexes with the regulatory subunit SAPSR1 (R1) of protein phosphatase-6 (PP6). Knockdown of either R1 or PP6c prevents DNA-PK activation in response to ionizing radiation-induced DNA damage and radiosensitizes glioblastoma cells. Here, we demonstrate that R1 is necessary for and bridges the interaction between DNA-PK and PP6c. Using R1 deletion mutants, DNA-PK binding was mapped to two distinct regions of R1 spanning residues 1-326 and 522-700. Either region expressed alone was sufficient to bind DNA-PK, but only deletion of residues 1-326, not 522-700, eliminated interaction of R1 with DNA-PK. We assign 1-326 as the dominant domain and 522-700 as the supporting region. These results demonstrate that R1 acts as a bidentate anchor to DNA-PK and recruits PP6c. Targeting the dominant interface with small molecule or peptidomimetic inhibitors could specifically prevent activation of DNA-PK and thereby sensitize cells to ionizing radiation and other genotoxic agents.

0 Followers
 · 
164 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The negative-sense RNA genome of influenza A virus is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRP). The viral RdRP is an important host range determinant, indicating that its function is affected by interactions with cellular factors. However, the identities and the roles of most of these factors remain unknown. Here, we employed affinity-purification followed by mass spectrometry to identify cellular proteins that interact with the influenza A virus RdRP in infected human cells. We purified RdRPs using a recombinant influenza virus in which the PB2 subunit of the RdRP is fused to a Strep-tag. When this tagged subunit was purified from infected cells, co-purifying proteins included the other RdRP subunits, PB1 and PA, the viral nucleoprotein and neuraminidase, as well as 171 cellular proteins. Label-free quantitative mass spectrometry revealed that the most abundant of these host proteins were chaperones, cytoskeletal proteins, importins, proteins involved in ubiquitination, kinases and phosphatases, mitochondrial and ribosomal proteins. Among the phosphatases, we identified three subunits of the cellular serine/threonine-protein phosphatase 6 (PP6), including the catalytic subunit PPP6C and regulatory subunits PPP6R1 and PPP6R3. PP6 was found to interact directly with the PB1 and PB2 subunits of the viral RdRP, and siRNA-mediated knockdown of the catalytic subunit of PP6 in infected cells resulted in the reduction of viral RNA accumulation and the attenuation of virus growth. These results suggest that PP6 interacts with and positively regulates the activity of the influenza virus RdRP.
    Journal of Virology 09/2014; 88(22). DOI:10.1128/JVI.01813-14 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes.
    Progress in Biophysics and Molecular Biology 12/2014; DOI:10.1016/j.pbiomolbio.2014.12.003 · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amino acid deprivation promotes the inhibition of the kinase complex mTORC1 (mammalian target of rapamycin complex 1) and activation of the kinase GCN2 (general control nonrepressed 2). Signaling pathways downstream of both kinases have been thought to independently induce autophagy. We showed that these two amino acid-sensing systems are linked. We showed that pharmacological inhibition of mTORC1 led to activation of GCN2 and phosphorylation of the eukaryotic initiation factor 2α (eIF2α) in a mechanism dependent on the catalytic subunit of protein phosphatase 6 (PP6C). Autophagy induced by pharmacological inhibition of mTORC1 required PP6C, GCN2, and eIF2α phosphorylation. Although some of the PP6C mutants found in melanoma did not form a strong complex with PP6 regulatory subunits and were rapidly degraded, these mutants paradoxically stabilized PP6C encoded by the wild-type allele and increased eIF2α phosphorylation. Furthermore, these PP6C mutations were associated with increased autophagy in vitro and in human melanoma samples. Thus, these data showed that GCN2 activation and phosphorylation of eIF2α in response to mTORC1 inhibition are necessary for autophagy. Additionally, we described a role for PP6C in this process and provided a mechanism for PP6C mutations associated with melanoma. Copyright © 2015, American Association for the Advancement of Science.
    Science Signaling 01/2015; 8(367):ra27. DOI:10.1126/scisignal.aaa0899 · 7.65 Impact Factor