Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RNAs in retinal microvascular endothelial cells.

Centre for Vision and Vascular Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
Journal of Cellular Biochemistry (Impact Factor: 3.37). 02/2012; 113(6):2098-111. DOI: 10.1002/jcb.24084
Source: PubMed

ABSTRACT The retinal vascular endothelium is essential for angiogenesis and is involved in maintaining barrier selectivity and vascular tone. The aim of this study was to identify and quantify microRNAs and other small regulatory non-coding RNAs (ncRNAs) which may regulate these crucial functions. Primary bovine retinal microvascular endothelial cells (RMECs) provide a well-characterized in vitro system for studying angiogenesis. RNA extracted from RMECs was used to prepare a small RNA library for deep sequencing (Illumina Genome Analyzer). A total of 6.8 million reads were mapped to 250 known microRNAs in miRBase (release 16). In many cases, the most frequent isomiR differed from the sequence reported in miRBase. In addition, five novel microRNAs, 13 novel bovine orthologs of known human microRNAs and multiple new members of the miR-2284/2285 family were detected. Several ∼30 nucleotide sno-miRNAs were identified, with the most highly expressed being derived from snoRNA U78. Highly expressed microRNAs previously associated with endothelial cells included miR-126 and miR-378, but the most highly expressed was miR-21, comprising more than one-third of all mapped reads. Inhibition of miR-21 with an LNA inhibitor significantly reduced proliferation, migration, and tube-forming capacity of RMECs. The independence from prior sequence knowledge provided by deep sequencing facilitates analysis of novel microRNAs and other small RNAs. This approach also enables quantitative evaluation of microRNA expression, which has highlighted the predominance of a small number of microRNAs in RMECs. Knockdown of miR-21 suggests a role for this microRNA in regulation of angiogenesis in the retinal microvasculature.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background To determine the role of miR-378 as a biomarker for anti-angiogenic therapy response in ovarian cancer. Methods Expression of miR-378 was analyzed in ovarian cancer cell lines and human tumors vs. normal ovarian epithelial cells by qRT-PCR. After miR-378 transfection in SKOV3 cells, dysregulated genes were identified using microarray. Data from The Cancer Genome Atlas (TCGA) was utilized to correlate miR-378 expression with progression-free survival (PFS) among patients treated with anti-angiogenic therapy by using Kaplan-Meier and Cox proportional hazards. Results MiR-378 was overexpressed in ovarian cancer cells and tumors vs. normal ovarian epithelial cells. Overexpressing miR-378 in ovarian cancer cells altered expression of genes associated with angiogenesis (ALCAM, EHD1, ELK3, TLN1), apoptosis (RPN2, HIPK3), and cell cycle regulation (SWAP-70, LSM14A, RDX). In the TCGA dataset, low vs. high miR-378 expression was associated with longer PFS in a subset of patients with recurrent ovarian cancer treated with bevacizumab (9.2 vs. 4.2 months; p = 0.04). On multivariate analysis, miR-378 expression was an independent predictor for PFS after anti-angiogenic treatment (HR = 2.04, 95%CI: 1.12 - 3.72; p = 0.02). Furthermore, expression levels of two miR-378 targets (ALCAM and EHD1) were associated with PFS in this subgroup of patients who received anti-angiogenic therapy (9.4 vs. 4.2 months, p = 0.04 for high vs. low ALCAM; 7.9 vs. 2.3 months, p < 0.01 for low vs. high EHD1). Conclusions Our data suggest that miR-378 is overexpressed in ovarian cancer cells and tumors vs. normal ovarian epithelial cells. MiR-378 and its downstream targets may serve as markers for response to anti-angiogenic therapy.
    Gynecologic Oncology 06/2014; · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small noncoding RNAs which regulate the activities of target mRNAs. We compared the expression profiles of the miRNAs in the vitreous of eyes with macular hole (MH) to that in eyes with proliferative diabetic retinopathy (PDR).
    Albrecht von Graæes Archiv für Ophthalmologie 06/2014; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammary gland is a dynamic organ that undergoes important physiological changes during reproductive cycles. Until now, data regarding the characterisation of miRNA in the mammary gland have been scarce and mainly focused on their abnormal expression in breast cancer. Our goal was to characterise the microRNA (miRNA) involved in mechanisms regulating the mammary function, with particular focus on the lactation stage. Using high-throughput sequencing technology, the exhaustive repertoires of miRNA expressed (miRNome) in mouse and bovine mammary glands during established lactation were identified, characterized and compared. Furthermore, in order to obtain more information on miRNA loading in the RNA-induced silencing complex (RISC), the miRNome was compared with that obtained from RNA associated with the AGO2 protein (AGO2-miRNome) in mouse lactating mammary gland. This study enabled the identification of 164 and 167 miRNA in mouse and bovine, respectively. Among the 30 miRNA most highly expressed in each species, 24 were common to both species and six of them were preferentially highly expressed in lactating than non-lactating mammary gland. The potential functional roles of these 24 miRNA were deduced using DIANA-miRPath software, based on miRNA/mRNA interactions. Moreover, seven putative novel miRNA were identified. Using DAVID analysis, it was concluded that the predicted targets of two of these putative novel miRNA are involved in mammary gland morphogenesis. Our study provides an overview of the characteristics of lactating mouse and bovine mammary gland miRNA expression profiles. Moreover, species-conserved miRNA involved in this fundamental biological function were identified. These miRNomes will now be used as references for further studies during which the impact of animal breeding on the miRNA expression will be analysed.
    PLoS ONE 03/2014; 9(3):e91938. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014