Article

Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RNAs in retinal microvascular endothelial cells.

Centre for Vision and Vascular Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
Journal of Cellular Biochemistry (Impact Factor: 3.06). 02/2012; 113(6):2098-111. DOI: 10.1002/jcb.24084
Source: PubMed

ABSTRACT The retinal vascular endothelium is essential for angiogenesis and is involved in maintaining barrier selectivity and vascular tone. The aim of this study was to identify and quantify microRNAs and other small regulatory non-coding RNAs (ncRNAs) which may regulate these crucial functions. Primary bovine retinal microvascular endothelial cells (RMECs) provide a well-characterized in vitro system for studying angiogenesis. RNA extracted from RMECs was used to prepare a small RNA library for deep sequencing (Illumina Genome Analyzer). A total of 6.8 million reads were mapped to 250 known microRNAs in miRBase (release 16). In many cases, the most frequent isomiR differed from the sequence reported in miRBase. In addition, five novel microRNAs, 13 novel bovine orthologs of known human microRNAs and multiple new members of the miR-2284/2285 family were detected. Several ∼30 nucleotide sno-miRNAs were identified, with the most highly expressed being derived from snoRNA U78. Highly expressed microRNAs previously associated with endothelial cells included miR-126 and miR-378, but the most highly expressed was miR-21, comprising more than one-third of all mapped reads. Inhibition of miR-21 with an LNA inhibitor significantly reduced proliferation, migration, and tube-forming capacity of RMECs. The independence from prior sequence knowledge provided by deep sequencing facilitates analysis of novel microRNAs and other small RNAs. This approach also enables quantitative evaluation of microRNA expression, which has highlighted the predominance of a small number of microRNAs in RMECs. Knockdown of miR-21 suggests a role for this microRNA in regulation of angiogenesis in the retinal microvasculature.

0 Bookmarks
 · 
125 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin suppresses endothelial proliferation and migration, which leads to delayed re-endothelialization in the rapamycin-eluted stents that are used in coronary heart disease patients. Because microRNAs (miRs) play important roles in endothelial angiogenesis, we tested the hypothesis that rapamycin induces endothelial suppression, partly through pathways that involve miRs. Rapamycin treatment increased the expression of miR-21 in HUVECs. The downregulation of miR-21 by inhibitors abolished the negative effects of rapamycin on endothelial cell growth and mobility. RhoB was confirmed as a direct target gene of miR-21. Knockdown of Raptor by siRNA 2 mimicked the effects of rapamycin on miR-21 expression. Our study provides a new explanation of the mechanism of rapamycin-mediated inhibition of endothelial proliferation and migration.
    FEBS letters 01/2013; · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although anucleated, platelets contain megakaryocyte-derived messenger ribonucleic acid (mRNA) which can be translated to produce protein molecules. Recently, platelets have been found to contain small (∼23 base pair) non-coding microRNAs (miRNAs) derived from hairpin-like precursors. MiRNAs can specifically silence their mRNA targets regulating mRNA translation. Platelet miRNAs are reported to bind to important platelet target mRNAs involved in platelet reactivity including P2Y(12) ADP receptor, GPIIb receptor, and cyclic AMP-dependent protein kinase A. They also regulate important functions such as platelet shape change, granules secretion, and platelet activation. Platelet miRNAs were also proposed as biomarkers of arteriosclerosis, although their role in vascular inflammation needs to be elucidated. Further, the possibility of using miRNAs as therapeutic tools has emerged. Using synthetic oligo-nucleotides that antagonize miRNAs binding to their mRNAs-targets or synthetic miRNAs mimics that enhance endogenous miRNAs function potentially will ultimately lead to the manipulation of platelet miRNAs expression and function with significant effects on specific protein levels and overall platelet reactivity.
    Platelets 09/2012; · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammary gland is a dynamic organ that undergoes important physiological changes during reproductive cycles. Until now, data regarding the characterisation of miRNA in the mammary gland have been scarce and mainly focused on their abnormal expression in breast cancer. Our goal was to characterise the microRNA (miRNA) involved in mechanisms regulating the mammary function, with particular focus on the lactation stage. Using high-throughput sequencing technology, the exhaustive repertoires of miRNA expressed (miRNome) in mouse and bovine mammary glands during established lactation were identified, characterized and compared. Furthermore, in order to obtain more information on miRNA loading in the RNA-induced silencing complex (RISC), the miRNome was compared with that obtained from RNA associated with the AGO2 protein (AGO2-miRNome) in mouse lactating mammary gland. This study enabled the identification of 164 and 167 miRNA in mouse and bovine, respectively. Among the 30 miRNA most highly expressed in each species, 24 were common to both species and six of them were preferentially highly expressed in lactating than non-lactating mammary gland. The potential functional roles of these 24 miRNA were deduced using DIANA-miRPath software, based on miRNA/mRNA interactions. Moreover, seven putative novel miRNA were identified. Using DAVID analysis, it was concluded that the predicted targets of two of these putative novel miRNA are involved in mammary gland morphogenesis. Our study provides an overview of the characteristics of lactating mouse and bovine mammary gland miRNA expression profiles. Moreover, species-conserved miRNA involved in this fundamental biological function were identified. These miRNomes will now be used as references for further studies during which the impact of animal breeding on the miRNA expression will be analysed.
    PLoS ONE 03/2014; 9(3):e91938. · 3.53 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
May 23, 2014