Article

Deep Sequencing Reveals Predominant Expression of miR-21 Amongst the Small Non-Coding RNAs in Retinal Microvascular Endothelial Cells

Centre for Vision and Vascular Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
Journal of Cellular Biochemistry (Impact Factor: 3.37). 06/2012; 113(6):2098-111. DOI: 10.1002/jcb.24084
Source: PubMed

ABSTRACT The retinal vascular endothelium is essential for angiogenesis and is involved in maintaining barrier selectivity and vascular tone. The aim of this study was to identify and quantify microRNAs and other small regulatory non-coding RNAs (ncRNAs) which may regulate these crucial functions. Primary bovine retinal microvascular endothelial cells (RMECs) provide a well-characterized in vitro system for studying angiogenesis. RNA extracted from RMECs was used to prepare a small RNA library for deep sequencing (Illumina Genome Analyzer). A total of 6.8 million reads were mapped to 250 known microRNAs in miRBase (release 16). In many cases, the most frequent isomiR differed from the sequence reported in miRBase. In addition, five novel microRNAs, 13 novel bovine orthologs of known human microRNAs and multiple new members of the miR-2284/2285 family were detected. Several ∼30 nucleotide sno-miRNAs were identified, with the most highly expressed being derived from snoRNA U78. Highly expressed microRNAs previously associated with endothelial cells included miR-126 and miR-378, but the most highly expressed was miR-21, comprising more than one-third of all mapped reads. Inhibition of miR-21 with an LNA inhibitor significantly reduced proliferation, migration, and tube-forming capacity of RMECs. The independence from prior sequence knowledge provided by deep sequencing facilitates analysis of novel microRNAs and other small RNAs. This approach also enables quantitative evaluation of microRNA expression, which has highlighted the predominance of a small number of microRNAs in RMECs. Knockdown of miR-21 suggests a role for this microRNA in regulation of angiogenesis in the retinal microvasculature.

Download full-text

Full-text

Available from: Alan W Stitt, Feb 28, 2014
0 Followers
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although anucleated, platelets contain megakaryocyte-derived messenger ribonucleic acid (mRNA) which can be translated to produce protein molecules. Recently, platelets have been found to contain small (∼23 base pair) non-coding microRNAs (miRNAs) derived from hairpin-like precursors. MiRNAs can specifically silence their mRNA targets regulating mRNA translation. Platelet miRNAs are reported to bind to important platelet target mRNAs involved in platelet reactivity including P2Y(12) ADP receptor, GPIIb receptor, and cyclic AMP-dependent protein kinase A. They also regulate important functions such as platelet shape change, granules secretion, and platelet activation. Platelet miRNAs were also proposed as biomarkers of arteriosclerosis, although their role in vascular inflammation needs to be elucidated. Further, the possibility of using miRNAs as therapeutic tools has emerged. Using synthetic oligo-nucleotides that antagonize miRNAs binding to their mRNAs-targets or synthetic miRNAs mimics that enhance endogenous miRNAs function potentially will ultimately lead to the manipulation of platelet miRNAs expression and function with significant effects on specific protein levels and overall platelet reactivity.
    Platelets 09/2012; 24(8). DOI:10.3109/09537104.2012.724483
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small RNAs ∼22 nt in length that are involved in the regulation of a variety of physiological and pathological processes. Advances in high-throughput small RNA sequencing (smRNA-seq), one of the next-generation sequencing applications, have reshaped the miRNA research landscape. In this study, we established an integrative database, the YM500 (http://ngs.ym.edu.tw/ym500/), containing analysis pipelines and analysis results for 609 human and mice smRNA-seq results, including public data from the Gene Expression Omnibus (GEO) and some private sources. YM500 collects analysis results for miRNA quantification, for isomiR identification (incl. RNA editing), for arm switching discovery, and, more importantly, for novel miRNA predictions. Wetlab validation on >100 miRNAs confirmed high correlation between miRNA profiling and RT-qPCR results (R = 0.84). This database allows researchers to search these four different types of analysis results via our interactive web interface. YM500 allows researchers to define the criteria of isomiRs, and also integrates the information of dbSNP to help researchers distinguish isomiRs from SNPs. A user-friendly interface is provided to integrate miRNA-related information and existing evidence from hundreds of sequencing datasets. The identified novel miRNAs and isomiRs hold the potential for both basic research and biotech applications.
    Nucleic Acids Research 11/2012; 41(Database issue). DOI:10.1093/nar/gks1238
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin suppresses endothelial proliferation and migration, which leads to delayed re-endothelialization in the rapamycin-eluted stents that are used in coronary heart disease patients. Because microRNAs (miRs) play important roles in endothelial angiogenesis, we tested the hypothesis that rapamycin induces endothelial suppression, partly through pathways that involve miRs. Rapamycin treatment increased the expression of miR-21 in HUVECs. The downregulation of miR-21 by inhibitors abolished the negative effects of rapamycin on endothelial cell growth and mobility. RhoB was confirmed as a direct target gene of miR-21. Knockdown of Raptor by siRNA 2 mimicked the effects of rapamycin on miR-21 expression. Our study provides a new explanation of the mechanism of rapamycin-mediated inhibition of endothelial proliferation and migration.
    FEBS letters 01/2013; 587(4). DOI:10.1016/j.febslet.2012.12.021
Show more