Article

Effects of the cyclin-dependent kinase 10 (CDK10) on the tamoxifen sensitivity of keloid samples.

Department of Plastic and Aesthetic, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
Molecules (Impact Factor: 2.43). 01/2012; 17(2):1307-18. DOI:10.3390/molecules17021307
Source: PubMed

ABSTRACT Cyclin-dependent kinase 10 (CDK10) is a cell cycle regulating protein kinase, which has just been discriminated in recent years. In this paper, mRNA and protein expression of CDK10 were first investigated by a comparative study between 23 human keloid tissue samples and their adjacent normal skin. To further address its potential as a therapeutic target in the treatment of keloid, a plasmid expressing the CDK10 gene was transfected into keloid fibroblast. The effects on tamoxifen-induced apoptosis were then investigated using Western blot assay and flow cytometry. Results showed that there is a generally down-regulated expression of CDK10 in keloid compared to normal skin samples. Transfection with the recombinant CDK10 plasmid significantly decreased the viability of cells and increased the apoptosis rates. Tamoxifen sensitivity in keloid fibroblasts was observed after treatment with the recombinant CDK10 plasmid. The results suggested that CDK10 may play an important role in enhancement of tamoxifen efficiency, and its expression may have a synergistic effect on keloid treatments.

0 0
 · 
0 Bookmarks
 · 
59 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Fibrosis and proliferative scarring are prominent features of the severe forms of rhinophyma. Up-regulation of growth and fibroblast kinetics are hallmarks of fibrosis. Persistent overexpression or dysregulated activation of the fibrogenic isoforms of transforming growth factor beta (TGF-beta) is associated with the increased fibroblast function leading to fibrotic conditions such as rhinophyma. Tamoxifen, a synthetic nonsteroidal antiestrogen, can neutralize or down-regulate TGF-beta. Fibroblast-populated collagen lattices (FPCLs) were constructed from fibroblasts cultured from rhinophyma or normal nasal skin. One-half of each set of FPCLs was treated with Tamoxifen. Lattice contraction was serially measured over 5 days, and the supernatants of the cultures were analyzed for TGF-beta-2 by immunoassay. Tamoxifen significantly decreased fibroblast activity by decreasing contraction of the treated lattices (P < 0.05) and significantly decreased the production/secretion of TGF-beta-2 by rhinophyma fibroblasts (P < 0.001). These results suggest a possible new cellular/molecular approach to the treatment of the fibrotic varieties of rhinophyma.
    Annals of Plastic Surgery 04/2006; 56(3):301-5. · 1.38 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cultured human skin keloid fibroblasts (KFs) showed bioenergetics similar to cancer cells in generating ATP mainly from glycolysis as demonstrated by increased lactate production. Activities of hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and lactate dehydrogenase were also significantly higher compared with normal fibroblasts (NFs). Inhibitors of glycolysis decreased the rate of ATP biosynthesis more significantly in KFs suggesting their reliance on glycolysis. In contrast, ATP generation in NFs was derived mainly from oxidative phosphorylation (OXPHOS), which was more compromised by mitochondrial/respiratory inhibitors. However, when fortified with excess exogenous respiratory substrates, ATP production was increased to a similar maximal level in both types of fibroblasts. In spite of this seemingly equal total capacity, ATP biosynthesis and intracellular ATP concentration were significantly higher in KFs, which further increased their ATP production when exposed to hypoxia and hypoxia-mimetics: desferrioxamine and cobalt chloride. This upregulation was again significantly compromised by glycolytic inhibitors. The rate of generation of reactive oxygen species was lower in KFs possibly due to their switch to aerobic glycolysis from mitochondrial OXPHOS. Thus, cultured skin KFs could provide a human cell model to study the de-regulation of bioenergetics of proliferative cells and their response to the HIF (hypoxia-inducible factor) signaling.
    Journal of Investigative Dermatology 04/2008; 128(3):702-9. · 6.19 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Currently, there are no specific markers available for the early detection and for monitoring testicular cancer. Based upon an approach that targets nuclear structure, we have identified a set of proteins that are specific for seminomas, which may then have clinical utility for the disease. Utilizing samples obtained from men with no evidence of testicular cancer (n = 5) as well as those with seminomas (n = 6), nuclear matrix proteins were extracted and separated using a high-resolution two-dimensional electrophoresis gel system. The proteins were identified by mass spectrometry analysis. These analyses revealed seven nuclear matrix proteins associated with the normal testes, which did not appear in the seminomas. In the seminomas, four nuclear matrix proteins were identified to be associated with the disease that were absent in the normal testes. Mass spectrometric and immunoblot analyses of these proteins revealed that one of the proteins identified in the normal testes appears to be StAR-related lipid transfer protein 7 (StARD7). In the non-seminoma tissues, one of the identified proteins appears to be cell division protein kinase 10 (CDK10). Both StarD7 and CDK10 could potentially be involved in cell differentiation and growth, and thus may serve as potential targets for therapy of prognostication of seminomas. This is the first study to examine the role of nuclear structural proteins as potential biomarkers in testicular cancer. We are currently examining the roles of some of the identified proteins as potential biomarkers for the disease.
    Journal of Cellular Biochemistry 09/2009; 108(6):1274-9. · 3.06 Impact Factor

Full-text

View
0 Downloads
Available from