Polarization rotator for InP rib waveguide.

Departamento Ingeniería de Comunicaciones, ETSI Telecomunicación, Universidad de Málaga, Málaga, Spain.
Optics Letters (Impact Factor: 3.39). 02/2012; 37(3):335-7. DOI: 10.1364/OL.37.000335
Source: PubMed

ABSTRACT A polarization rotator, suitable for integration in a polarization diversity optical receiver fabricated in InP technology, is proposed. The device, based on a two steps waveguide rotator, includes tapered input and output ports that provide very low insertion loss (<0.04 dB). An extinction ratio of 40 dB at 1550 nm wavelength is calculated, comparable or even superior to other state of the art polarization converters. The main advantage of the proposed design is the capability of implementation using a standard fabrication process with only two dry etch steps, significantly reducing complexity and cost.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly efficient, low-loss, and compact InP/InGaAsP polarization converter based on a half-ridge waveguide structure is fabricated and demonstrated experimentally. The device is fabricated by a simple self-aligned process and integrated with a ridge InP waveguide. Using a 150-μm-long device, we obtain the mode conversion of more than 96% and the on-chip loss of less than 1.0 dB over the broad wavelength range from 1510 to 1575 nm. The experimental results are explained quantitatively using the full-vector eigenmode calculation, which also reveals large fabrication tolerance of the demonstrated device.
    Optics Express 03/2013; 21(6):6910-8. · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO<sub>2</sub> Periodic Layer Structure (PLS) on top of one of its arms. By engineering the birefringence of the PLS we are able to design the MZI arms so that sensitivities to the most critical fabrication errors are greatly reduced. Our PBS design tolerates waveguide width variations of 400nm maintaining a polarization extinction ratio better than 13dB in the complete C-Band.
    Optics Express 06/2013; 21(12):14146-14151. · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate numerically a novel plasmonic polarization converter relying on the excitation of a so-called dihedron dielectric loaded plasmon polariton. The dihedron dielectric loaded waveguide consists of a dielectric ridge implemented at the inner corner of a metal-coated dielectric step. For a dielectric ridge with a square cross section, the plasmon polariton modes supported by each side of the metallized step hybridize to create supermodes with crossed polarizations. We show that the two supermodes can be operated in a dual-mode interferometer configuration to perform an efficient (24 dB) TE-TM/TM-TE polarization conversion over typical distances below 30 μm at telecommunications wavelengths. In addition, on the basis of the thermo-optical properties of our device, we find that the dihedron plasmonic polarization converter is temperature insensitive.
    Optics Letters 02/2014; 39(3):697-700. · 3.39 Impact Factor