Article

Quantum mechanical study of sulfuric acid hydration: atmospheric implications.

Dean's Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States.
The Journal of Physical Chemistry A (Impact Factor: 2.77). 03/2012; 116(9):2209-24. DOI: 10.1021/jp2119026
Source: PubMed

ABSTRACT The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H(2)SO(4)(H(2)O)(n) where n = 1-6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller-Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO(4)(-)·H(3)O(+))(H(2)O)(n-1) clusters are competitive with the neutral (H(2)SO(4))(H(2)O)(n) clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H(2)SO(4)(H(2)O)(n) clusters are favorable in colder regions of the troposphere (T = 216.65-273.15 K) for n = 1-6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H(2)SO(4)-H(2)O system must contain more than one H(2)SO(4) and are in concert with recent findings (1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.

1 Bookmark
 · 
210 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first step in atmospheric new particle formation involves the aggregation of gas phase molecules into small molecular clusters that can grow by colliding with gas molecules and each other. In this work we used first principles quantum chemistry combined with a dynamic model to study the steady-state kinetics of sets of small clusters consisting of sulfuric acid and ammonia or sulfuric acid and dimethylamine molecules. Both sets were studied with and without electrically charged clusters. We show the main clustering pathways in the simulated systems together with the quantum chemical Gibbs free energies of formation of the growing clusters. In the sulfuric acid-ammonia system, the major growth pathways exhibit free energy barriers, whereas in the acid-dimethylamine system the growth occurs mainly via barrierless condensation. When ions are present, charged clusters contribute significantly to the growth in the acid-ammonia system. For dimethylamine the role of ions is minor, except at very low acid concentration, and the growing clusters are electrically neutral.
    The Journal of Chemical Physics 08/2013; 139(8):084312. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: doi: 10.1021/jz400108y
    Journal of Physical Chemistry Letters 02/2013; 4(5):779-785. · 6.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sulfuric acid can act as a catalyst of its own formation. We have carried out a computational investigation on the gas phase formation of H2SO4 by hydrolysis of SO3 involving one and two water molecules, and also in the presence of sulfuric acid and its complexes with one and two water molecules. The hydrolysis of SO3 requires the concurrence of two water molecules, one of them acting as a catalyzer, and our results predict an important catalytic effect, ranging between 3 and 11 kcal•mol-1 when substituting the catalytic water molecule by a sulfuric acid molecule or one of its hydrates. In these cases, the reaction products are either bare sulfuric acid dimer or sulfuric acid dimer complexed with a water molecule. There are broad implications from these new findings. The results of the present investigation show that the catalytic effect of sulfuric acid in the SO3 hydrolysis can be important in the Earth's stratosphere, in the heterogeneous formation of sulfuric acid and in the formation of aerosols, in the H2SO4 formation by aircraft engines, and also in understanding the formation of sulfuric acid in the atmosphere of Venus.
    Journal of the American Chemical Society 11/2012; · 10.68 Impact Factor

Full-text

View
140 Downloads
Available from
Jun 1, 2014