Immature Citrus sunki Peel Extract Exhibits Antiobesity Effects by β-Oxidation and Lipolysis in High-Fat Diet-Induced Obese Mice

Department of Biology, Jeju National University, Korea.
Biological & Pharmaceutical Bulletin (Impact Factor: 1.83). 02/2012; 35(2):223-30. DOI: 10.1248/bpb.35.223
Source: PubMed


The peel of Citrus sunki HORT. ex TANAKA has been widely used in traditional Asian medicine for the treatment of many diseases, including indigestion and bronchial asthma. In this study, we investigated the antiobesity activity of immature C. sunki peel extract (designated CSE) using high-fat diet (HFD)-induced obese C57BL/6 mice and mature 3T3-L1 adipocytes. In the animal study, body weight gain, adipose tissue weight, serum total cholesterol, and triglyceride in the CSE-administered group decreased significantly compared to the HFD group. Also, CSE supplementation reduced serum levels of glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and lactate dehydrogenase. Moreover, it significantly decreased the accumulation of fatty droplets in liver tissue, suggesting a protective effect against HFD-induced hepatic steatosis. Dietary supplementation with CSE reversed the HFD-induced decrease in the phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which are related to fatty acid β-oxidation, in the epididymal adipose tissue. Also, CSE increased AMPK and ACC phosphorylation in mature 3T3-L1 adipocytes. CSE also enhanced lipolysis by phosphorylation of cAMP-dependent protein kinase (PKA) and hormone-sensitive lipase (HSL) in mature 3T3-L1 adipocytes. These results suggest that CSE had an antiobesity effect via elevated β-oxidation and lipolysis in adipose tissue.

14 Reads
  • Source
    • "The existing studies have suggested that citrus peels played important roles in regulating glucose and lipid metabolic disorders. Kang et al. reported that Citrus sunki peel extract reduced the body weight, adipose tissue weight gain and inhibited the accumulation of fatty droplets in high-fat diet-induced obese mice [14]. Ding et al. have also reported that Citrus ichangensis peel extract could ameliorate metabolic disorders [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.
    PLoS ONE 04/2014; 9(4):e93510. DOI:10.1371/journal.pone.0093510 · 3.23 Impact Factor
  • Source
    • "Various citrus peels have been used in Chinese Medicine for centuries to cure indigestion, cough, nausea, cardiovascular diseases, liver diseases, constipation, skin inflammation, cancer and muscle pain [9,10]. Citrus peels are rich in bioactive compounds such as flavonoids, coumarins, limonoids, alkaloids and polyphenols which exhibit a wide range of biological activities, including anti-cardiac, anti-tumor, anti-oxidative, anti-inflammatory, anti-hypertension, anti-hyperglycemia, anti-hyperlipidemia and anti-obesity [11-17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic syndrome is a serious health problem in both developed and developing countries. The present study investigated the anti-metabolic disorder effects of different pomelo varieties on obese C57BL/6 mice induced by high-fat (HF) diet. The peels of four pomelo varieties were extracted with ethanol and the total phenols and flavonoids content of these extracts were measured. For the animal experiment, the female C57BL/6 mice were fed with a Chow diet or a HF diet alone or supplemented with 1% (w/w) different pomelo peel extracts for 8 weeks. Body weight and food intake were measured every other day. At the end of the treatment, the fasting blood glucose, glucose tolerance and insulin (INS) tolerance test, serum lipid profile and insulin levels, and liver lipid contents were analyzed. The gene expression analysis was performed with a quantitative real-time PCR assay. The present study showed that the Citrus grandis liangpinyou (LP) and beibeiyou (BB) extracts were more potent in anti-metabolic disorder effects than the duanshiyou (DS) and wubuyou (WB) extracts. Both LP and BB extracts blocked the body weight gain, lowered fasting blood glucose, serum TC, liver lipid levels, and improved glucose tolerance and insulin resistance, and lowered serum insulin levels in HF diet-fed mice. Compared with the HF group, LP and BB peel extracts increased the mRNA expression of PPARα and its target genes, such as FAS, PGC-1α and PGC-1β, and GLUT4 in the liver and white adipocyte tissue (WAT). We found that that pomelo peel extracts could prevent high-fat diet-induced metabolic disorders in C57BL/6 mice through the activation of the PPARα and GLUT4 signaling. Our results indicate that pomelo peels could be used as a dietary therapy and the potential source of drug for metabolic disorders.
    PLoS ONE 10/2013; 8(10):e77915. DOI:10.1371/journal.pone.0077915 · 3.23 Impact Factor
  • Source
    • "A study by Bok et al. suggested that citrus peel diet reduced plasma and hepatic cholesterol in rats [20]. It has been reported that the immature Citrus sunki peel extract had an antiobesity effect by elevated β-oxidation and lipolysis in the adipose tissue of HF diet fed mice [21]. In addition, citrus phytochemicals, such as flavonoids, nomilin, synephrine, and auraptene, have exhibited antiobesity effects by increasing energy expenditure, improving metabolism, and enhancing lipolysis [22] [23] [24] [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a common nutritional disorder associated with type 2 diabetes, cardiovascular diseases, dyslipidemia, and certain cancers. In this study, we investigated the effects of Citrus ichangensis peel extract (CIE) in high-fat (HF) diet-induced obesity mice. Female C57BL/6 mice were fed a chow diet or an HF diet alone or supplemented with 1% w/w CIE for 8 weeks. We found that CIE treatment could lower blood glucose level and improve glucose tolerance. In the HF+CIE group, body weight gain, serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c) levels, and liver triglyceride (TG) and TC concentrations were significantly (P < 0.05) decreased relative to those in the HF group. To elucidate the mechanism of CIE on the metabolism of glucose and lipid, related genes expression in liver were examined. In liver tissue, CIE significantly decreased the mRNA expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes, such as fatty acid synthase (FAS) and acyl-CoA oxidase (ACO). Moreover, CIE also decreased the expression of liver X receptor (LXR) α and β which are involved in lipid and glucose metabolism. These results suggest that CIE administration could alleviate obesity and related metabolic disorders in HF diet-induced obesity mice through the inhibition of PPARγ and LXR signaling.
    Evidence-based Complementary and Alternative Medicine 12/2012; 2012:678592. DOI:10.1155/2012/678592 · 1.88 Impact Factor
Show more