Article

Association between Psychotic Symptoms and Cortical Thickness Reduction across the Schizophrenia Spectrum.

Laboratory of Neuroscience, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Johann Wolfgang Goethe-University, 60528 Frankfurt/Main, Germany.
Cerebral Cortex (Impact Factor: 8.31). 01/2012; DOI: 10.1093/cercor/bhr380
Source: PubMed

ABSTRACT The current study provides a complete magnetic resonance imaging (MRI) analysis of thickness throughout the cerebral cortical mantle in patients with schizophrenia (SZ) and rigorously screened and matched unaffected relatives and controls and an assessment of its relation to psychopathology and subjective cognitive function. We analyzed 3D-anatomical MRI data sets, obtained at 3 T, from 3 different subject groups: 25 SZ patients, 29 first-degree relatives, and 37 healthy control subjects. We computed whole-brain cortical thickness using the Freesurfer software and assessed group differences. We also acquired clinical and psychometric data. The results showed markedly reduced cortical thickness in SZ patients compared with controls, most notably in the frontal and temporal lobes, in the superior parietal lobe and several limbic areas, with intermediate levels of cortical thickness in relatives. In both patients and relatives, we found an association between subjective cognitive dysfunction and reduced thickness of frontal cortex, and predisposition toward hallucinations and reduced thickness of the superior temporal gyrus. Our findings suggest that changes in specific cortical areas may predispose to specific symptoms, as exemplified by the association between temporal cortex thinning and hallucinations.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disconnection in white matter (WM) pathway and alterations in gray matter (GM) structure have been hypothesized as pathogenesis in schizophrenia. However, the relationship between the abnormal WM integrity and the alteration of GM in anatomically connected areas remains uncertain. Moreover, the potential influence of antipsychotic medication on WM anisotropy and cortical morphology was not excluded in previous studies. In this study, a total number of 34 subjects were enrolled, including 17 medicated-naïve chronic schizophrenia patients and 17 healthy controls. Tract-based spatial statistics (TBSS) were applied to investigate the level of WM integrity. The FreeSurfer surface-based analysis was used to determine GM volume, cortical thickness and the surface area of GM regions which corresponded to abnormal WM fiber tracts. We observed that patients possessed lower fractional anisotropy (FA) values in the left inferior fronto-occipital fasciculus (IFOF) and left inferior longitudinal fasciculus (ILF), along with smaller GM volume and cortical thinning in temporal lobe than the healthy controls, which reflected the underlying WM and GM disruption that contributed to the disease. In the patient population, the lower connectivity of ILF and IFOF was positively associated with cortical thickness in left lateral orbitofrontal cortex, superior temporal gyrus and lingual gyrus in males, and positively correlated with GM volume in left lateral orbitofrontal cortex in females. On the other hand, it was negatively correlated with cortical area of middle temporal gyrus in males and temporal pole in females respectively, but not when genders were combined. These findings suggested that abnormal WM integrity and anatomical correspondence of GM alterations in schizophrenia were interdependent on gender-separated analysis in patients with schizophrenia. Moreover, combining TBSS and FreeSurfer might be a useful method to provide significant insight into interacting processes related to WM fiber tracts and GM changes in schizophrenia.
    Magnetic Resonance Imaging 10/2013; · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is associated with cortical thickness reductions in the brain, but it is unclear whether these are present before illness onset, and to what extent they are driven by genetic factors. In the Edinburgh High Risk Study, structural MRI scans of 150 young individuals at high familial risk for schizophrenia, 34 patients with first-episode schizophrenia and 36 matched controls were acquired, and clinical information was collected for the following 10years for the high-risk and control group. During this time, 17 high-risk individuals developed schizophrenia, on average 2.5years after the scan, and 57 experienced isolated or sub-clinical psychotic symptoms. We applied surface-based analysis of the cerebral cortex to this cohort, and extracted cortical thickness in automatically parcellated regions. Analysis of variance revealed widespread thinning of the cerebral cortex in first-episode patients, most pronounced in superior frontal, medial parietal, and lateral occipital regions (corrected p<10(-4)). In contrast, cortical thickness reductions were only found in high-risk individuals in the left middle temporal gyrus (corrected p<0.05). There were no significant differences between those at high risk who later developed schizophrenia and those who remained well. These findings confirm cortical thickness reductions in schizophrenia patients. Increased familial risk for schizophrenia is associated with thinning in the left middle temporal lobe, irrespective of subsequent disease onset. The absence of widespread cortical thinning before disease onset implies that the cortical thinning is unlikely to simply reflect genetic liability to schizophrenia but is predominantly driven by disease-associated factors.
    Schizophrenia Research 10/2013; · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Computational brain-imaging studies of individuals at familial high risk for psychosis have provided interesting results, but interpreting these findings can be a challenge due to a number of factors. We searched the literature for studies reporting whole brain voxel-based morphometry (VBM) or functional magnetic resonance imaging (fMRI) findings in people at familial high risk for schizophrenia compared with a control group. A voxel-wise meta-analysis with the effect-size version of Signed Differential Mapping (ES-SDM) identified regional abnormalities of functional brain response. Similarly, an ES-SDM meta-analysis was conducted on VBM studies. A multi-modal imaging meta-analysis was used to highlight brain regions with both structural and functional abnormalities. Nineteen studies met the inclusion criteria, in which a total of 815 familial high-risk individuals were compared to 685 controls. Our fMRI results revealed a number of regions of altered activation. VBM findings demonstrated both increases and decreases in grey matter density of relatives in a variety of brain regions. The multimodal analysis revealed relatives had decreased grey matter with hyper-activation in the left inferior frontal gyrus/amygdala, and decreased grey matter with hypo-activation in the thalamus. We found several regions of altered activation or structure in familial high-risk individuals. Reliable fMRI findings in the right posterior superior temporal gyrus further confirm that alteration in this area is a potential marker of risk.
    Psychiatry research. 11/2013;