Article

Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1α/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice.

Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 04/2012; 32(7):1226-36. DOI: 10.1128/MCB.05988-11
Source: PubMed

ABSTRACT SIRT1, a highly conserved NAD(+)-dependent protein deacetylase, is a key metabolic sensor that directly links nutrient signals to animal metabolic homeostasis. Although SIRT1 has been implicated in a number of hepatic metabolic processes, the mechanisms by which hepatic SIRT1 modulates bile acid metabolism are still not well understood. Here we report that deletion of hepatic SIRT1 reduces the expression of farnesoid X receptor (FXR), a nuclear receptor that regulates bile acid homeostasis. We provide evidence that SIRT1 regulates the expression of FXR through hepatocyte nuclear factor 1α (HNF1α). SIRT1 deficiency in hepatocytes leads to decreased binding of HNF1α to the FXR promoter. Furthermore, we show that hepatocyte-specific deletion of SIRT1 leads to derangements in bile acid metabolism, predisposing the mice to development of cholesterol gallstones on a lithogenic diet. Taken together, our findings indicate that SIRT1 plays a vital role in the regulation of hepatic bile acid homeostasis through the HNF1α/FXR signaling pathway.

0 Bookmarks
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SIRT1 is central to the lifespan and vascular health, but undergoes degradation that contributes to several medical conditions, including diabetes. How SIRT1 turnover is regulated remains unclear. However, emerging evidence suggests that endothelial nitric oxide synthase (eNOS) positively regulates SIRT1 protein expression. We recently identified NO as an endogenous inhibitor of 26S proteasome functionality with a cellular reporter system. Here we extended this finding to a novel pathway that regulates SIRT1 protein breakdown. In cycloheximide (CHX)-treated endothelial cells, NONOate, an NO donor, and A23187, an eNOS activator, significantly stabilized SIRT1 protein. Similarly, NO enhanced SIRT1 protein, but not mRNA expression, in CHX-free cells. NO also stabilized an autophagy-related protein unc-51 like kinase (ULK1), but did not restore SIRT1 protein levels in ULK1-siRNA-treated cells or in mouse embryonic fibroblasts (MEF) from Ulk1-/- mice. This suggests that ULK1 mediated the NO regulation of SIRT1. Furthermore, adenoviral overexpression of ULK1 increased SIRT1 protein expression, while ULK1 siRNA treatment decreased it. Rapamycin-induced autophagy did not mimic these effects, suggesting that the effects of ULK1 were autophagy-independent. Treatment with MG132, a proteasome inhibitor, or siRNA of β-TrCP1, an E3 ligase, prevented SIRT1 reduction induced by ULK1-siRNA. Mechanistically, ULK1 negatively regulated 26S proteasome functionality, which was at least partly mediated by O-linked-GlcNAc transferase (OGT), probably by increased O-GlcNAc modification of proteasomal subunit Rpt2. The NO-ULK1-SIRT1 axis was likely operative in the whole animal: both ULK1 and SIRT1 protein levels were significantly reduced in tissue homogenates in eNOS-knockout mice (lung) and in db/db mice where eNOS is downregulated (lung and heart). Taken together, the results show that NO stabilizes SIRT1 by regulating 26S proteasome functionality through ULK1 and OGT, but not autophagy, in endothelial cells.
    PLoS ONE 12/2014; 9(12):e116165. DOI:10.1371/journal.pone.0116165 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.
    Cellular and Molecular Life Sciences CMLS 12/2014; DOI:10.1007/s00018-014-1805-y · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The well-known functions of bile acids (BAs) are the emulsification and absorption of lipophilic xenobiotics. However, the emerging evidences in the past decade showed that BAs act as signaling molecules that not only autoregulate their own metabolism and enterohepatic recirculation, but also as important regulators of integrative metabolism by activating nuclear and membrane-bound G protein-coupled receptors. The present review was to get insight into the role of maintenance of BA homeostasis and BA signaling pathways in development and management of hepatobiliary and intestinal diseases. Detailed and comprehensive search of PubMed and Scopus databases was carried out for original and review articles. Disturbances in BA homeostasis contribute to the development of several hepatobiliary and intestinal disorders, such as non-alcoholic fatty liver disease, liver cirrhosis, cholesterol gallstone disease, intestinal diseases and both hepatocellular and colorectal carcinoma. Further efforts made in order to advance the understanding of sophisticated BA signaling network may be promising in developing novel therapeutic strategies related not only to hepatobiliary and gastrointestinal but also systemic diseases.
    Hepatobiliary & pancreatic diseases international: HBPD INT 02/2015; 14(1):18-33. DOI:10.1016/S1499-3872(14)60307-6 · 1.17 Impact Factor

Preview

Download
1 Download
Available from