Linear systems analysis of the fMRI signal

Department of Psychology, University of Washington, PO Box 351525, Seattle, WA 98195-1525, USA.
NeuroImage (Impact Factor: 6.36). 01/2012; 62(2):975-84. DOI: 10.1016/j.neuroimage.2012.01.082
Source: PubMed

ABSTRACT In 1995 when we began our investigations of the human visual system using fMRI, little was known about the temporal properties of the fMRI signal. Before we felt comfortable making quantitative estimates of neuronal responses with this new technique, we decided to first conduct a basic study of how the time-course of the fMRI response varied with stimulus timing and strength. The results ended up showing strong evidence that to a first approximation the hemodynamic transformation was linear in time. This was both important and remarkable: important because nearly all fMRI data analysis techniques assume or require linearity, and remarkable because the physiological basis of the hemodynamic transformation is so complex that we still have a far from complete understanding of it. In this paper, we provide highlights of the results of our original paper supporting the linear transform hypothesis. A reanalysis of the original data provides some interesting new insights into the published results. We also provide a detailed appendix describing of the properties and predictions of a linear system in time in the context of the transformation between neuronal responses and the BOLD signal.

Download full-text


Available from: Geoffrey Boynton, Jul 27, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Kilner et al. [Kilner, J.M., Kiebel, S.J., Friston, K.J., 2005. Applications of random field theory to electrophysiology. Neurosci. Lett. 374, 174-178.] we described a fairly general analysis of induced responses-in electromagnetic brain signals-using the summary statistic approach and statistical parametric mapping. This involves localising induced responses-in peristimulus time and frequency-by testing for effects in time-frequency images that summarise the response of each subject to each trial type. Conventionally, these time-frequency summaries are estimated using post-hoc averaging of epoched data. However, post-hoc averaging of this sort fails when the induced responses overlap or when there are multiple response components that have variable timing within each trial (for example stimulus and response components associated with different reaction times). In these situations, it is advantageous to estimate response components using a convolution model of the sort that is standard in the analysis of fMRI time series. In this paper, we describe one such approach, based upon ordinary least squares deconvolution of induced responses to input functions encoding the onset of different components within each trial. There are a number of fundamental advantages to this approach: for example; (i) one can disambiguate induced responses to stimulus onsets and variably timed responses; (ii) one can test for the modulation of induced responses-over peristimulus time and frequency-by parametric experimental factors and (iii) one can gracefully handle confounds-such as slow drifts in power-by including them in the model. In what follows, we consider optimal forms for convolution models of induced responses, in terms of impulse response basis function sets and illustrate the utility of deconvolution estimators using simulated and real MEG data.
    NeuroImage 09/2012; 64C(6):388-398. DOI:10.1016/j.neuroimage.2012.09.014 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain state decoding or "mind reading" via multivoxel pattern analysis (MVPA) has become a popular focus of functional magnetic resonance imaging (fMRI) studies. In brain decoding, stimulus presentation rate is increased as fast as possible to collect many training samples and obtain an effective and reliable classifier or computational model. However, for extremely rapid event-related experiments, the blood-oxygen-level-dependent (BOLD) signals evoked by adjacent trials are heavily overlapped in the time domain. Thus, identifying trial-specific BOLD responses is difficult. In addition, voxel-specific hemodynamic response function (HRF), which is useful in MVPA, should be used in estimation to decrease the loss of weak information across voxels and obtain fine-grained spatial information. Regularization methods have been widely used to increase the efficiency of HRF estimates. In this study, we propose a regularization framework called mixed L2 norm regularization. This framework involves Tikhonov regularization and an additional L2 norm regularization term to calculate reliable HRF estimates. This technique improves the accuracy of HRF estimates and significantly increases the classification accuracy of the brain decoding task when applied to a rapid event-related four-category object classification experiment. At last, some essential issues such as the impact of low-frequency fluctuation (LFF) and the influence of smoothing are discussed for rapid event-related experiments.
    Computational and Mathematical Methods in Medicine 05/2013; 2013:643129. DOI:10.1155/2013/643129 · 1.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have demonstrated significant regional variability in the hemodynamic response function (HRF), highlighting the difficulty of correctly interpreting functional MRI (fMRI) data without proper modeling of the HRF. The focus of this study was to investigate the HRF variability within visual cortex. The HRF was estimated for a number of cortical visual areas by deconvolution of fMRI blood oxygenation level dependent (BOLD) responses to brief, large-field visual stimulation. Significant HRF variation was found across visual areas V1, V2, V3, V4, VO-1,2, V3AB, IPS-0,1,2,3, LO-1,2, and TO-1,2. Additionally, a subpopulation of voxels was identified that exhibited an impulse response waveform that was similar, but not identical, to an inverted version of the commonly described and modeled positive HRF. These voxels were found within the retinotopic confines of the stimulus and were intermixed with those showing positive responses. The spatial distribution and variability of these HRFs suggest a vascular origin for the inverted waveforms. We suggest that the polarity of the HRF is a separate factor that is independent of the suppressive or activating nature of the underlying neuronal activity. Correctly modeling the polarity of the HRF allows one to recover an estimate of the underlying neuronal activity rather than discard the responses from these voxels on the assumption that they are artifactual. We demonstrate this approach on phase-encoded retinotopic mapping data as an example of the benefits of accurately modeling the HRF during the analysis of fMRI data. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 11/2014; 35(11). DOI:10.1002/hbm.22569 · 6.92 Impact Factor
Show more