Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity

The Institute of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012.
Lipids in Health and Disease (Impact Factor: 2.22). 01/2012; 11(1):17. DOI: 10.1186/1476-511X-11-17
Source: PubMed


Obesity is known to be associated with higher risks of cardiovascular disease, metabolic syndrome, and diabetes mellitus. Thyroid-stimulating hormone (TSHR) is the receptor for thyroid-stimulating hormone (TSH, or thyrotropin), the key regulator of thyroid functions. The expression of TSHR, once considered to be limited to thyrocytes, has been so far detected in many extrathyroidal tissues including liver and fat. Previous studies have shown that TSHR expression is upregulated when preadipocytes differentiate into mature adipocytes, suggestive of a possible role of TSHR in adipogenesis. However, it remains unclear whether TSHR expression in adipocytes is implicated in the pathogenesis of obesity.
In the present study, TSHR expression in adipose tissues from both mice and human was analyzed, and its association with obesity was evaluated.
We here showed that TSHR expression was increased at both mRNA and protein levels when 3T3-L1 preadipocytes were induced to differentiate. Knockdown of TSHR blocked the adipocyte differentiation of 3T3-L1 preadipocytes as evaluated by Oil-red-O staining for lipid accumulation and by RT-PCR analyses of PPAR-γ and ALBP mRNA expression. We generated obesity mice (C57/BL6) by high-fat diet feeding and found that the TSHR protein expression in visceral adipose tissues from obesity mice was significantly higher in comparison with the non-obesity control mice (P < 0.05). Finally, the TSHR expression in adipose tissues was determined in 120 patients. The results showed that TSHR expression in subcutaneous adipose tissue is correlated with BMI (body mass index).
Taken together, these results suggested that TSHR is an important regulator of adipocyte differentiation. Dysregulated expression of TSHR in adipose tissues is associated with obesity, which may involve a mechanism of excess adipogenesis.

Download full-text


Available from: Jia-Jun Zhao,
18 Reads
  • Source
    • "After one week of adaptation, the mice and rats were randomly divided into two groups with 12 animals per group: the “control group” (normal chow, 4% fat) and the “high-fat group” (high-fat diet, 20% fat). The basal and high-fat diet were both purchased from Beijing Ke Ao Xie Li Feed Co., Ltd, and detailed information regarding these diets has been published previously [39]. The body weight of each animal was determined once per week for 14 weeks until the animals were sacrificed by deep anesthesia with 0.3% pentobarbital sodium (1 ml/kg, intraperitoneal injection). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Twist 1 is highly expressed in adipose tissue and has been associated with obesity and related disorders. However, the molecular function of Twist 1 in adipose tissue is unclear. Twist 1 has been implicated in cell lineage determination and differentiation. Therefore, we investigated both the role of Twist 1 in adipocyte precursor mobilization and the relationship of Twist 1 with other molecular determinants of adipocyte differentiation. Methods We examined Twist 1 mRNA and protein expression in subcutaneous adipose tissues from diet-induced obese C57/BL6 mice and Wistar rats and in obese patients undergoing liposuction or adipose transplant surgeries. Twist 1 expression was measured on days 0, 2, 4, 8, and 12 of 3T3-L1 differentiation in vitro. The role of Twist 1 in adipogenesis was explored using retroviral interference of Twist 1 expression. Adipokine secretion was evaluated using a RayBio® Biotin Label-based Adipokine Array. Results Twist 1 mRNA and protein levels were reduced in diet-induced obese mice and rats and in obese humans. Twist 1 was upregulated during 3T3-L1 preadipocyte differentiation in vitro, beginning from the fourth day of differentiation induction. Retroviral interference of Twist 1 expression did not significantly impair lipid formation; however, retroviral interference induced PPARγ mRNA and protein expression on day 4 of differentiation induction. Adipokine array analyses revealed increased secretion of CXCR4 (19.55-fold), VEGFR1 (92.13-fold), L-21 R (63.55-fold), and IL-12 R beta 1 (59.66-fold) and decreased secretion of VEGFR3 (0.01-fold), TSLP R (0.071-fold), MIP-1 gamma (0.069-fold), TNF RI/TNFRSF1A (0.09-fold), and MFG-E8 (0.06-fold). Conclusions Twist 1 is a regulator of adipocyte gene expression although it is not likely to regulate differentiation. We identified PPARγ as a potential target of Twist 1 and found variation in the secretion of multiple adipokines, which might indicate a prospective mechanism linking Twist 1 expression with obesity or associated diseases.
    Lipids in Health and Disease 08/2014; 13(1):132. DOI:10.1186/1476-511X-13-132 · 2.22 Impact Factor
  • Source
    • "Biological plausibility in support of our findings is provided by a series of recent observations. First, thyroid stimulating hormone receptors (TSHR) are present in tissues other than the thyroid, especially in differentiating adipocytes [35]. Whilst it is conceivable that increasing TSHR concentration in obesity may attract additional release of TSH through a positive feedback to the pituitary, direct data in this regard are currently unavailable. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mexican Americans are at an increased risk of both thyroid dysfunction and metabolic syndrome (MS). Thus it is conceivable that some components of the MS may be associated with the risk of thyroid dysfunction in these individuals. Our objective was to investigate and replicate the potential association of MS traits with thyroid dysfunction in Mexican Americans. Methods We conducted association testing for 18 MS traits in two large studies on Mexican Americans – the San Antonio Family Heart Study (SAFHS) and the National Health and Nutrition Examination Survey (NHANES) 2007–10. A total of 907 participants from 42 families in SAFHS and 1633 unrelated participants from NHANES 2007–10 were included in this study. The outcome measures were prevalence of clinical and subclinical hypothyroidism and thyroid function index (TFI) – a measure of thyroid function. For the SAFHS, we used polygenic regression analyses with multiple covariates to test associations in setting of family studies. For the NHANES 2007–10, we corrected for the survey design variables as needed for association analyses in survey data. In both datasets, we corrected for age, sex and their linear and quadratic interactions. Results TFI was an accurate indicator of clinical thyroid status (area under the receiver-operating-characteristic curve to detect clinical hypothyroidism, 0.98) in both SAFHS and NHANES 2007–10. Of the 18 MS traits, waist circumference (WC) showed the most consistent association with TFI in both studies independently of age, sex and body mass index (BMI). In the SAFHS and NHANES 2007–10 datasets, each standard deviation increase in WC was associated with 0.13 (p < 0.001) and 0.11 (p < 0.001) unit increase in the TFI, respectively. In a series of polygenic and linear regression models, central obesity (defined as WC ≥ 102 cm in men and ≥88 cm in women) was associated with clinical and subclinical hypothyroidism independent of age, sex, BMI and type 2 diabetes in both datasets. Estimated prevalence of hypothyroidism was consistently high in those with central obesity, especially below 45y of age. Conclusions WC independently associates with increased risk of thyroid dysfunction. Use of WC to identify Mexican American subjects at high risk of thyroid dysfunction should be investigated in future studies.
    BMC Endocrine Disorders 06/2014; 14(1):46. DOI:10.1186/1472-6823-14-46 · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serum lipid profiles may be influenced by thyroid function, but the detailed mechanism remains unclear. Increasing evidence suggests that thyrotropin (TSH) may exert extra-thyroidal effects. The goal of this study was to evaluate the relationship between serum TSH levels and the lipid profiles in euthyroid non-smokers with newly diagnosed asymptomatic coronary heart disease (CHD). This was a retrospective study of 406 euthyroid non-smokers (187 males and 219 females) with newly diagnosed asymptomatic CHD from 2004 to 2010 in Jinan, China. Lipid parameters and the levels of TSH, FT3, and FT4 were determined. Multiple linear regression analysis and Logistic regression analysis were used to assess the influence of TSH on the lipid profiles and the risks of dyslipidemia. The TSH level, even within the normal range, was positively and linearly correlated with total cholesterol (TC), non-high density lipoprotein cholesterol (non-HDL-C) and triglycerides (TG) (Beta = 0.173, 0.181 and 0.103, respectively, P < 0.01 in all). With 1 mIU/L rise of TSH, the levels of TC, TG and non-HDL-C will increase by 1.010, 1.064, and 1.062 mmol/L, respectively. The odds ratio of hypercholesterolemia and hypertriglyceridemia with respect to the serum TSH level was 1.640 (95% CI 1.199-2.243, P = 0.002) and 1.349 (95% CI 1.054-1.726, P = 0.017), respectively. TSH levels were correlated in a positive linear manner with the TC, non-HDL-C and TG levels in euthyroid non-smokers with newly diagnosed asymptomatic CHD. TSH in the upper limits of the reference range might exert adverse effects on lipid profiles and thus representing as a risk factor for hypercholesterolemia and hypertriglyceridemia in the context of CHD.
    Lipids in Health and Disease 03/2012; 11(1):44. DOI:10.1186/1476-511X-11-44 · 2.22 Impact Factor
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.