Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
Nature Chemical Biology (Impact Factor: 13.22). 01/2012; 8(3):277-84. DOI: 10.1038/nchembio.773
Source: PubMed

ABSTRACT Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The genes encoding luteinizing hormone and follicle stimulating hormone are activated by gonadotropin-releasing hormone (GnRH), and we hypothesized that this involves GnRH-induction of various histone modifications. At basal conditions in an immature gonadotrope-derived cell line, the hormone-specific β-subunit gene promoters are densely packed with histones, and contain low levels of H3K4 trimethylation (H3K4me3). GnRH both induces this modification and causes histone loss, creating a more active chromatin state. The H3K4me3 appears to be mediated by menin and possibly catalyzed by the menin-mixed-lineage leukemia (MLL) 1/2 methyl transferase complex, as inhibition of MLL recruitment or menin knockdown reduced gene expression and the levels of H3K4me3 on all three promoters. Menin recruitment to the β-subunit gene promoters is increased by GnRH, possibly involving transcription factors such as estrogen receptor α and/or steroidogenic factor 1, with which menin interacts. Menin also interacts with ring finger protein 20, which ubiquitylates H2BK120 (H2BK120ub), which was reported to be a pre-requisite for H3K4me3 at various gene promoters. Although levels of H2BK120ub are increased by GnRH in the coding regions of these genes, levels at the promoters do not correlate with those of H3K4me3, nor with gene expression, suggesting that H3K4me3 is not coupled to H2BK120ub in transcriptional activation of these genes. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 01/2015; 1849(3). DOI:10.1016/j.bbagrm.2015.01.001 · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal translocations affecting mixed lineage leukemia gene (MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report the development of highly potent and orally bioavailable small-molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, and show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate the efficacy of these compounds in primary samples derived from MLL leukemia patients. Overall, we demonstrate that pharmacologic inhibition of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cancer cell 03/2015; DOI:10.1016/j.ccell.2015.02.016 · 23.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies requires a thorough understanding of the underlying mechanisms of malignant transformation driven by aberrant epigenetic regulators. In this review we provide an overview of the major protagonists in epigenetic regulation, their aberrant role in myeloid malignancies, prognostic significance and potential for therapeutic targeting. Copyright© Ferrata Storti Foundation.
    Haematologica 12/2014; 99(12):1772-1783. DOI:10.3324/haematol.2013.092007 · 5.87 Impact Factor


Available from
May 17, 2014