Article

The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds.

Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Ave, LSRB 1086, Albany, NY 12222, USA.
Biomaterials (Impact Factor: 8.31). 04/2012; 33(11):3175-86. DOI: 10.1016/j.biomaterials.2012.01.010
Source: PubMed

ABSTRACT Nanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-l-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy. Focal adhesion (FA) proteins, such as phosphorylated FAK (Tyr397), paxillin (Tyr118), talin and vinculin were localized to FA complexes in adult cells grown on planar surfaces but were reduced and diffusely localized in cells grown on nanofiber surfaces, similar to the pattern observed in adult mouse salivary gland tissues. Significant differences in epithelial cell morphology and cell clustering were also observed and quantified, using image segmentation and computational cell-graph analyses. No statistically significant differences in scaffold stiffness between planar PLGA film controls compared to nanofibers scaffolds were detected using nanoindentation with atomic force microscopy, indicating that scaffold topography rather than mechanical properties accounts for changes in cell attachments and cell structure. Finally, PLGA nanofiber scaffolds could support the spontaneous self-organization and branching of dissociated embryonic salivary gland cells. Nanofiber scaffolds may therefore have applicability in the future for engineering an artificial salivary gland.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian salivary gland develops as a highly branched structure designed to produce and secrete saliva. This review will focus on research on mouse submandibular gland development and the translation of this basic research towards therapy for patients suffering from salivary hypofunction. Here we review the most recent literature that has enabled a better understanding of the mechanisms of salivary gland development. Additionally, we discuss approaches proposed to restore salivary function using gene and cell-based therapy. Increasing our understanding of the developmental mechanisms involved during development is critical to design effective therapies for regeneration and repair of damaged glands.
    Seminars in Cell and Developmental Biology 12/2013; · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Substrate compliance is reported to alter cell phenotype, but little is known about the effects of compliance on cell development within the context of a complex tissue. In this study, we used 0.48 kPa and 19.66 kPa polyacrylamide gels to test the effects of the substrate modulus on submandibular salivary gland development in culture and found a significant decrease in branching morphogenesis in explants grown on the stiff 19.66 kPa gels relative to those grown on the more physiologically compliant 0.48 kPa gels. While proliferation and apoptosis were not affected by the substrate modulus, tissue architecture and epithelial acinar cell differentiation were profoundly perturbed by aberrant, high stiffness. The glands cultured on 0.48 kPa gels were similar to developing glands in morphology and expression of the differentiation markers smooth muscle α-actin in developing myoepithelial cells and aquaporin 5 in proacinar cells. At 19.66 kPa, however, tissue morphology and the expression and distribution of smooth muscle α-actin and aquaporin 5 were disrupted. Significantly, aberrant gland development at 19.66 kPa could be rescued by both mechanical and chemical stimuli. Transfer of glands from 19.66 kPa to 0.48 kPa gels resulted in substantial recovery of acinar structure and differentiation, and addition of exogenous TGFβ1 at 19.66 kPa resulted in a partial rescue of morphology and differentiation within the proacinar buds. These results indicate that environmental compliance is critical for organogenesis, and suggest that both mechanical and chemical stimuli can be exploited to promote organ development in the contexts of tissue engineering and organ regeneration.
    Tissue Engineering Part A 01/2014; · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Whole BM cells were lysed and soluble intracellular contents ("BM Soup") were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.
    PLoS ONE 01/2014; 9(1):e87158. · 3.53 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
May 29, 2014