Post-retrieval propranolol treatment does not modulate reconsolidation or extinction of ethanol-induced conditioned place preference

Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA.
Pharmacology Biochemistry and Behavior (Impact Factor: 2.82). 04/2012; 101(2):222-30. DOI: 10.1016/j.pbb.2012.01.009
Source: PubMed

ABSTRACT The reconsolidation hypothesis posits that established emotional memories, when reactivated, become labile and susceptible to disruption. Post-retrieval injection of propranolol (PRO), a nonspecific β-adrenergic receptor antagonist, impairs subsequent retention performance of a cocaine- and a morphine-induced conditioned place preference (CPP), implicating the noradrenergic system in the reconsolidation processes of drug-seeking behavior. An important question is whether post-retrieval PRO disrupts memory for the drug-cue associations, or instead interferes with extinction. In the present study, we evaluated the role of the β-adrenergic system on the reconsolidation and extinction of ethanol-induced CPP. Male DBA/2J mice were trained using a weak or a strong conditioning procedure, achieved by varying the ethanol conditioning dose (1 or 2 g/kg) and the number of ethanol trials (2 or 4). After acquisition of ethanol CPP, animals were given a single post-retrieval injection of PRO (0, 10 or 30 mg/kg) and tested for memory reconsolidation 24 h later. Also, after the first reconsolidation test, mice received 18 additional 15-min choice extinction tests in which PRO was injected immediately after every test. Contrary to the prediction of the reconsolidation hypothesis, a single PRO injection after the retrieval test did not modify subsequent memory retention. In addition, repeated post-retrieval administration of PRO did not interfere with extinction of CPP in mice. Overall, our data suggest that the β-adrenergic receptor does not modulate the associative processes underlying ethanol CPP.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that both 3-amino-1,2,4-triazole (AT), which inhibits metabolism of ethanol (EtOH) to acetaldehyde by inhibiting catalase, and D-penicillamine (D-P), an acetaldehyde-sequestering agent, modulate EtOH-conditioned place preference (CPP) in male albino Swiss (IOPS Orl) mice. These studies followed a reference-dose-like procedure, which involves comparing cues that have both been paired with EtOH. However, the role of EtOH-derived acetaldehyde has not been examined using a standard CPP method, and efficacy of these treatments could be different under the two circumstances. In the present investigation, we manipulated the strength of CPP across five separate studies and evaluated the effect of D-P and AT on EtOH-induced CPP following a standard unbiased CPP procedure. Mice received pairings with vehicle-saline injections with one cue and, alternatively, with AT- and D-P-EtOH with another cue. Our studies indicate that AT and D-P only disrupt CPP induced by EtOH in mice when the number of conditioning sessions and the dose of EtOH are low. These findings suggest that acquisition of EtOH-induced CPP may depend on the levels of acetaldehyde available during memory acquisition and the strength of the memory. Therefore, we propose that, at least when the memory processes are labile, brain acetaldehyde could participate in the formation of Pavlovian learning elicited by EtOH.
    Psychopharmacology 07/2013; 230(4). DOI:10.1007/s00213-013-3177-7 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cues associated with alcohol can stimulate subjective states that increase relapse. Alcohol-cue associations may be strengthened by enhancing adrenergic activity with yohimbine or weakened by blocking adrenergic activity with propranolol. Alcohol-cue associations may also be weakened by long cue exposure sessions or strengthened by short cue exposure sessions. A useful treatment approach for alcoholism may combine adrenergic manipulation with cue exposure sessions of a specific duration. The present study sought to determine if cue exposure during long- or short-duration extinction sessions with post-session yohimbine or propranolol would alter alcohol cue-induced responding and self-administration. Rats were trained to respond for alcohol during sessions that included an olfactory cue given at the beginning of the session and a visual/auditory cue complex delivered concurrently with alcohol. Cue-induced responding was assessed before and after the repeated extinction sessions. Repeated alcohol extinction sessions of long duration (45 min) or short duration (5 min) were followed immediately by injections of saline, yohimbine, or propranolol. After the second set of cue-induced responding tests, reacquisition of operant alcohol self-administration was examined. To determine if the experimental procedures were sensitive to memory manipulation through other pharmacological mechanisms, the NMDA receptor antagonist MK-801 was given 20 min prior to long-duration extinction sessions. Both the long- and short-duration extinction sessions decreased cue-induced responding. Neither yohimbine nor propranolol, given post-session, had subsequent effects on cue-induced responding or alcohol self-administration. MK-801 blocked the effect of extinction sessions on cue-induced responding but had no effect on self-administration. The present study shows that manipulation of the NMDA system in combination with alcohol cue exposure therapy during extinction-like sessions may be more effective than manipulation of the adrenergic system in reducing the strength of alcohol-cue associations in this specific model of alcohol relapse.
    Pharmacology Biochemistry and Behavior 01/2013; DOI:10.1016/j.pbb.2013.11.020 · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inbred mouse strains such as C57BL/6J (B6) and DBA/2J (D2) and related strains have been used extensively to help identify genetic controls for a number of ethanol-related behaviors, including acute intoxication and sensitivity to repeated exposures. The disparate ethanol drinking behaviors of B6 mice expressing high-drinking/preference and D2 mice expressing low-drinking/preference have yielded considerable insight into the heritable control of alcohol drinking. However, the B6-high and D2-low drinking phenotypes are contrasted with ethanol-conditioned reward-like behaviors, which are robustly expressed by D2 mice and considerably less expressed by B6 mice. This suggests that peripheral factors, chiefly ethanol taste, may help drive ethanol drinking by these and related strains, which complicates mouse genetic studies designed to understand the relationships between reward-related behaviors and ethanol drinking. Traditional approaches such as the sucrose/saccharin-substitution procedure that normally accentuate ethanol drinking in rodents have had limited success in low drinking/preferring mice such as the D2 line. This may be due to allelic variations of the sweet taste receptor subunit, expressed by many ethanol low-drinking/preferring strains, which would limit the utility of these types of substitution approaches. We have recently shown (McCool & Chappell, 2012) that monosodium glutamate (MSG), the primary component of umami taste, can be used in a substitution procedure to initiate ethanol drinking in both B6 and D2 mice that greatly surpasses that initiated by a more traditional sucrose-substitution procedure. In this study, we show that ethanol drinking initiated by MSG substitution in D2 mice, but not sucrose substitution, can persist for several weeks following removal of the flavor. These findings further illustrate the utility of MSG substitution to initiate ethanol drinking in distinct mouse strains.
    Alcohol 01/2013; DOI:10.1016/j.alcohol.2013.10.008 · 2.04 Impact Factor


Available from