Article

Enhanced magnitude and breadth of neutralizing humoral response to a DNA vaccine targeting the DHBV envelope protein delivered by in vivo electroporation.

Université Lyon 1, France.
Virology (Impact Factor: 3.35). 03/2012; 425(1):61-9. DOI: 10.1016/j.virol.2012.01.001
Source: PubMed

ABSTRACT We explored in the duck hepatitis B virus (DHBV) model the impact of electroporation (EP)-mediated DNA vaccine delivery on the neutralizing humoral response to viral preS/S large envelope protein. EP enhanced the kinetics and magnitude of anti-preS response compared to the standard needle DNA injection (SI). Importantly, EP dramatically enhanced the neutralizing potency of the humoral response, since antibodies induced by low DNA dose (10 μg) were able to highly neutralize DHBV and to recognize ten antigenic regions, including four neutralization epitopes. Whereas, SI-induced antibodies by the same low DNA dose were not neutralizing and the epitope pattern was extremely narrow, since it was limited to only one epitope. Thus, EP-based delivery was able to improve the dose efficiency of DNA vaccine and to maintain a highly neutralizing, multi-specific B-cell response, suggesting that it may be an effective approach for chronic hepatitis B therapy at clinically feasible DNA dose.

0 Bookmarks
 · 
185 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.
    Journal of Biotechnology 09/2012; · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This preclinical study investigated the therapeutic efficacy of electroporation (EP)-based delivery of plasmid DNA (pDNA) encoding viral proteins (envelope, core) and IFN-γ in the duck model of chronic hepatitis B virus (DHBV) infection. Importantly, only DNA EP-therapy resulted in a significant decrease in mean viremia titers and in intrahepatic covalently closed circular DNA (cccDNA) levels in chronic DHBV-carrier animals, compared with standard needle pDNA injection (SI). In addition, DNA EP-therapy stimulated in all virus-carriers a humoral response to DHBV preS protein, recognizing a broader range of major antigenic regions, including neutralizing epitopes, compared with SI. DNA EP-therapy led also to significant higher intrahepatic IFN-γ RNA levels in DHBV-carriers compared to other groups, in the absence of adverse effects. We provide the first evidence on DNA EP-therapy benefit in terms of hepadnaviral infection clearance and break of immune tolerance in virus-carriers, supporting its clinical application for chronic hepatitis B.
    Virology 08/2012; 433(1):192-202. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using a unique vaccine antigen matched and single HIV Clade C approach we have assessed the immunogenicity of a DNA-poxvirus-protein strategy in mice and rabbits, administering MVA and protein immunizations either sequentially or simultaneously and in the presence of a novel TLR4 adjuvant, GLA-AF. Mice were vaccinated with combinations of HIV env/gag-pol-nef plasmid DNA followed by MVA-C (HIV env/gag-pol-nef) with HIV CN54gp140 protein (+/-GLA-AF adjuvant) and either co-administered in different muscles of the same animal with MVA-C or given sequentially at 3-week intervals. The DNA prime established a population of B cells that were able to mount a statistically significant anamnestic response to the boost vaccines. The greatest antigen-specific antibody response was observed in animals that received all vaccine components. Moreover, a high proportion of the total mucosal IgG (20 - 50%) present in the vaginal vault of these vaccinated animals was vaccine antigen-specific. The potent elicitation of antigen-specific immune responses to this vaccine modality was also confirmed in rabbits. Importantly, co-administration of MVA-C with the GLA-AF adjuvanted HIV CN54gp140 protein significantly augmented the antigen-specific T cell responses to the Gag antigen, a transgene product expressed by the MVA-C vector in a separate quadriceps muscle. We have demonstrated that co-administration of MVA and GLA-AF adjuvanted HIV CN54gp140 protein was equally effective in the generation of humoral responses as a sequential vaccination modality thus shortening and simplifying the immunization schedule. In addition, a significant further benefit of the condensed vaccination regime was that T cell responses to proteins expressed by the MVA-C were potently enhanced, an effect that was likely due to enhanced immunostimulation in the presence of systemic GLA-AF.
    PLoS ONE 01/2014; 9(1):e84707. · 3.73 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from
Aug 20, 2014