Bone Density and Cortical Structure after Pediatric Renal Transplantation

Department of Epidemiology, Biostatistics and Health Technology Assessment, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
Journal of the American Society of Nephrology (Impact Factor: 9.47). 01/2012; 23(4):715-26. DOI: 10.1681/ASN.2011050480
Source: PubMed

ABSTRACT The impact of renal transplantation on trabecular and cortical bone mineral density (BMD) and cortical structure is unknown. We obtained quantitative computed tomography scans of the tibia in pediatric renal transplant recipients at transplantation and 3, 6, and 12 months; 58 recipients completed at least two visits. We used more than 700 reference participants to generate Z-scores for trabecular BMD, cortical BMD, section modulus (a summary measure of cortical dimensions and strength), and muscle and fat area. At baseline, compared with reference participants, renal transplant recipients had significantly lower mean section modulus and muscle area; trabecular BMD was significantly greater than reference participants only in transplant recipients younger than 13 years. After transplantation, trabecular BMD decreased significantly in association with greater glucocorticoid exposure. Cortical BMD increased significantly in association with greater glucocorticoid exposure and greater decreases in parathyroid hormone levels. Muscle and fat area both increased significantly, but section modulus did not improve. At 12 months, transplantation associated with significantly lower section modulus and greater fat area compared with reference participants. Muscle area and cortical BMD did not differ significantly between transplant recipients and reference participants. Trabecular BMD was no longer significantly elevated in younger recipients and was low in older recipients. Pediatric renal transplant associated with persistent deficits in section modulus, despite recovery of muscle, and low trabecular BMD in older recipients. Future studies should determine the implications of these data on fracture risk and identify strategies to improve bone density and structure.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2007, International Society of Clinical Densitometry Pediatric Positions Task Forces reviewed the evidence for the clinical application of peripheral quantitative computed tomography (pQCT) in children and adolescents. At that time, numerous limitations regarding the clinical application of pQCT were identified, although its use as a research modality for investigation of bone strength was highlighted. The present report provides an updated review of evidence for the clinical application of pQCT, as well as additional reviews of whole body QCT scans of the central and peripheral skeletons, and high-resolution pQCT in children. Although these techniques remain in the domain of research, this report summarizes the recent literature and evidence of the clinical applicability and offers general recommendations regarding the use of these modalities in pediatric bone health assessment.
    Journal of Clinical Densitometry 04/2014; 17(2):258-274. DOI:10.1016/j.jocd.2014.01.006 · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review Abnormalities in bone health are increasingly recognized in the pediatric population. Although the methodologies for assessing bone mineral density were originally developed for adults, great strides have been made in recent years, improving their applicability to children. Understanding these technologies, their interpretation, utility, and limitations is critical when assessing a child or adolescent with a suspected abnormality in bone mineral density. Recent findings Improved normative databases that address some of the confounding variables in the growing and maturing child have solidified dual-energy X-ray absorptiometry as the preferred method for the assessment of bone mineral density in children. Consensus statements by expert panels now provide specific guidance to clinicians seeking to evaluate children with fractures or at risk for fractures. Although still primarily a research tool, continued development of quantitative computed tomography applications in pediatrics suggests there may be a complementary role for clinical use in the future. Summary In the child or adolescent with a significant fracture history or a potential for fractures because of an underlying cause, clinicians now have guidelines and normative data to better focus their evaluation. Likewise, researchers can use this information to improve clinical trial design and interpretation of results.
    Current Opinion in Obstetrics and Gynecology 08/2014; 26(5). DOI:10.1097/GCO.0000000000000100 · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Summary Chronic kidney disease (CKD) increases fracture risk. The results of this work point to changes in bone collagen and bone hydration as playing a role in bone fragility associated with CKD. Introduction Clinical data have documented a clear increase in fracture risk associated with chronic kidney disease (CKD). Preclinical studies have shown reductions in bone mechanical properties although the tissue-level mechanisms for these differences remain unclear. The goal of this study was to assess collagen cross-links and matrix hydration, two variables known to affect mechanical properties, in animals with either high- or low-turnover CKD. Methods At 35 weeks of age (>75 % reduction in kidney function), the femoral diaphysis of male Cy/+ rats with high or low bone turnover rates, along with normal littermate (NL) controls, were assessed for collagen cross-links (pyridinoline (Pyd), deoxypyridinoline (Dpd), and pentosidine (PE)) using a high-performance liquid chromatography (HPLC) assay as well as pore and bound water per volume (pw and bw) using a 1H nuclear magnetic resonance (NMR) technique. Material-level biomechanical properties were calculated based on previously published whole bone mechanical tests. Results Cortical bone from animals with high-turnover disease had lower Pyd and Dpd cross-link levels (−21 % each), lower bw (−10 %), higher PE (+71 %), and higher pw (+46 %) compared to NL. Animals with low turnover had higher Dpd, PE (+71 %), and bw (+7 %) along with lower pw (−60 %) compared to NL. Both high- and low-turnover animals had reduced material-level bone toughness compared to NL animals as determined by three-point bending. Conclusions These data document an increase in skeletal PE with advanced CKD that is independent of bone turnover rate and inversely related to decline in kidney function. Although hydration changes occur in both high- and low-turnover disease, the data suggest that nonenzymatic collagen cross-links may be a key factor in compromised mechanical properties of CKD.
    Osteoporosis International 03/2015; 26(3):977-985. DOI:10.1007/s00198-014-2978-9 · 4.17 Impact Factor