Article

Endothelial and perivascular cells maintain haematopoietic stem cells

Howard Hughes Medical Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
Nature (Impact Factor: 42.35). 01/2012; 481(7382):457-62. DOI: 10.1038/nature10783
Source: PubMed

ABSTRACT Several cell types have been proposed to create niches for haematopoietic stem cells (HSCs). However, the expression patterns of HSC maintenance factors have not been systematically studied and no such factor has been conditionally deleted from any candidate niche cell. Thus, the cellular sources of these factors are undetermined. Stem cell factor (SCF; also known as KITL) is a key niche component that maintains HSCs. Here, using Scf(gfp) knock-in mice, we found that Scf was primarily expressed by perivascular cells throughout the bone marrow. HSC frequency and function were not affected when Scf was conditionally deleted from haematopoietic cells, osteoblasts, nestin-cre- or nestin-creER-expressing cells. However, HSCs were depleted from bone marrow when Scf was deleted from endothelial cells or leptin receptor (Lepr)-expressing perivascular stromal cells. Most HSCs were lost when Scf was deleted from both endothelial and Lepr-expressing perivascular cells. Thus, HSCs reside in a perivascular niche in which multiple cell types express factors that promote HSC maintenance.

0 Bookmarks
 · 
227 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stromal cells (MSCs) are heterogeneous and primitive cells discovered first in the bone marrow (BM). They have putative roles in maintaining tissue homeostasis and are increasingly recognized as components of stem cell niches, which are best defined in the blood. The absence of in vivo MSC markers has limited our ability to track their behavior in vivo and draw comparisons with in vitro observations. Here we review the historical background of BM-MSCs, advances made in their prospective isolation, their developmental origin and contribution to maintaining subsets of hematopoietic cells, and how mesenchymal cells contribute to other stem cell niches. Copyright © 2015 Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the use of hematopoietic stem cells (HSCs) in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM) niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered five years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/Caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers. © 2015 S. Karger AG, Basel.
    Neuroendocrinology 02/2015; DOI:10.1159/000375502 · 4.93 Impact Factor

Full-text (2 Sources)

Download
130 Downloads
Available from
May 30, 2014