Embryonic stem cell trials for macular degeneration: A preliminary report

Jules Stein Eye Institute Retina Division, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
The Lancet (Impact Factor: 45.22). 02/2012; 379(9817):713-20. DOI: 10.1016/S0140-6736(12)60028-2
Source: PubMed


It has been 13 years since the discovery of human embryonic stem cells (hESCs). Our report provides the first description of hESC-derived cells transplanted into human patients.
We started two prospective clinical studies to establish the safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium (RPE) in patients with Stargardt's macular dystrophy and dry age-related macular degeneration--the leading cause of blindness in the developed world. Preoperative and postoperative ophthalmic examinations included visual acuity, fluorescein angiography, optical coherence tomography, and visual field testing. These studies are registered with, numbers NCT01345006 and NCT01344993.
Controlled hESC differentiation resulted in greater than 99% pure RPE. The cells displayed typical RPE behaviour and integrated into the host RPE layer forming mature quiescent monolayers after transplantation in animals. The stage of differentiation substantially affected attachment and survival of the cells in vitro after clinical formulation. Lightly pigmented cells attached and spread in a substantially greater proportion (>90%) than more darkly pigmented cells after culture. After surgery, structural evidence confirmed cells had attached and continued to persist during our study. We did not identify signs of hyperproliferation, abnormal growth, or immune mediated transplant rejection in either patient during the first 4 months. Although there is little agreement between investigators on visual endpoints in patients with low vision, it is encouraging that during the observation period neither patient lost vision. Best corrected visual acuity improved from hand motions to 20/800 (and improved from 0 to 5 letters on the Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity chart) in the study eye of the patient with Stargardt's macular dystrophy, and vision also seemed to improve in the patient with dry age-related macular degeneration (from 21 ETDRS letters to 28).
The hESC-derived RPE cells showed no signs of hyperproliferation, tumorigenicity, ectopic tissue formation, or apparent rejection after 4 months. The future therapeutic goal will be to treat patients earlier in the disease processes, potentially increasing the likelihood of photoreceptor and central visual rescue.
Advanced Cell Technology.

100 Reads
    • "For example, heart disease being a leading cause of death world-wide has arguably motivated the development of numerous protocols to generate cardiac muscle from hESCs [1] [2] [3]. In fact, the ability to generate pure populations of functional retinal pigmented epithelial (RPE) cells from pluripotent stem cells (PSCs) has led to several ongoing clinical trials using RPE cells derived from both ESCs and iPSCs to treat age-related macular degeneration and Stargardt disease, with early success being reported in an ESC-derived RPE clinical trial [4] [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2 weeks using collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies.
    Methods 09/2015; DOI:10.1016/j.ymeth.2015.09.019 · 3.65 Impact Factor
  • Source
    • "Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) offer a potentially limitless source of cells for industrial and clinical translation, and the everadvancing field of cellular reprogramming has redefined the limits of cell plasticity (Taylor et al., 2010). Meanwhile, cell culture and production technologies are rapidly improving, and the first instances of pluripotent-cellderived therapies have entered clinical trials (Schwartz et al., 2012). "
  • Source
    • "We have the real pluripotent stem cells, like human embryonic stem cells, which under appropriate conditions can differentiate into all cell types, and which can be potentially used for therapeutic purposes. Some clinical trials using ESC have been started (Schwartz et al., 2012). It is a justified hope that they can lead to the treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells are self-renewing cells that can differentiate into specialized cell type(s). Pluripotent stem cells, i.e. embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) differentiate into cells of all three embryonic lineages. Multipotent stem cells, like hematopoietic stem cells (HSC), can develop into multiple specialized cells in a specific tissue. Unipotent cells differentiate only into one cell type, like e.g. satellite cells of skeletal muscle. There are many examples of successful clinical applications of stem cells. Over million patients worldwide have benefited from bone marrow transplantations performed for treatment of leukemias, anemias or immunodeficiencies. Skin stem cells are used to heal severe burns, while limbal stem cells can regenerate the damaged cornea. Pluripotent stem cells, especially the patient-specific iPSC, have a tremendous therapeutic potential, but their clinical application will require overcoming numerous drawbacks. Therefore, the use of adult stem cells, which are multipotent or unipotent, can be at present a more achievable strategy. Noteworthy, some studies ascribed particular adult stem cells as pluripotent. However, despite efforts, the postulated pluripotency of such events like "spore-like cells", "very small embryonic-like stem cells" or "multipotent adult progenitor cells" have not been confirmed in stringent independent studies. Also plasticity of the bone marrow-derived cells which were suggested to differentiate e.g. into cardiomyocytes, has not been positively verified, and their therapeutic effect, if observed, results rather from the paracrine activity. Here we discuss the examples of recent studies on adult stem cells in the light of current understanding of stem cell biology.
    Acta biochimica Polonica 07/2015; DOI:10.18388/abp.2015_1023 · 1.15 Impact Factor
Show more